{"title":"Mode-S Radar Interrogation Algorithm Design for Dense Air Traffic Environment","authors":"A. Oncu, A. G. Aydin, Y. Erdogan, A. Akdogan","doi":"10.13164/re.2022.0460","DOIUrl":null,"url":null,"abstract":". The increasing trend in air traffic density will continue in the near future with the addition of different aerial vehicles. Before the Mode-S protocol, Mode A and Mode C were in use; however, the Mode A/C configuration was only usable in sparsely dense air traffic. One of the useful features of Mode-S is the ability of probabilistic interrogation. However, there has not yet been a sophisti-cated algorithm for many close aircraft. Considering a futuristic air environment with a swarm of drones and airbuses equipped with transponders, we utilized the probabilistic interrogation feature of Mode-S and designed an algorithm. The proposed algorithm is able to collect close aircraft information in a relatively short time. There has also been created a high-level Mode-S uplink and downlink communication simulator in order to exchange all-call communication and record the algorithm’s performance in terms of time and number of interrogations sent.","PeriodicalId":54514,"journal":{"name":"Radioengineering","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.13164/re.2022.0460","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
. The increasing trend in air traffic density will continue in the near future with the addition of different aerial vehicles. Before the Mode-S protocol, Mode A and Mode C were in use; however, the Mode A/C configuration was only usable in sparsely dense air traffic. One of the useful features of Mode-S is the ability of probabilistic interrogation. However, there has not yet been a sophisti-cated algorithm for many close aircraft. Considering a futuristic air environment with a swarm of drones and airbuses equipped with transponders, we utilized the probabilistic interrogation feature of Mode-S and designed an algorithm. The proposed algorithm is able to collect close aircraft information in a relatively short time. There has also been created a high-level Mode-S uplink and downlink communication simulator in order to exchange all-call communication and record the algorithm’s performance in terms of time and number of interrogations sent.
期刊介绍:
Since 1992, the Radioengineering Journal has been publishing original scientific and engineering papers from the area of wireless communication and application of wireless technologies. The submitted papers are expected to deal with electromagnetics (antennas, propagation, microwaves), signals, circuits, optics and related fields.
Each issue of the Radioengineering Journal is started by a feature article. Feature articles are organized by members of the Editorial Board to present the latest development in the selected areas of radio engineering.
The Radioengineering Journal makes a maximum effort to publish submitted papers as quickly as possible. The first round of reviews should be completed within two months. Then, authors are expected to improve their manuscript within one month. If substantial changes are recommended and further reviews are requested by the reviewers, the publication time is prolonged.