17O NMR studies of organic and biological molecules in aqueous solution and in the solid state

IF 7.3 2区 化学 Q2 CHEMISTRY, PHYSICAL
Gang Wu
{"title":"17O NMR studies of organic and biological molecules in aqueous solution and in the solid state","authors":"Gang Wu","doi":"10.1016/j.pnmrs.2019.06.002","DOIUrl":null,"url":null,"abstract":"<div><p>This review describes the latest developments in the field of <sup>17</sup>O NMR spectroscopy of organic and biological molecules both in aqueous solution and in the solid state. In the first part of the review, a general theoretical description of the nuclear quadrupole relaxation process in isotropic liquids is presented at a mathematical level suitable for non-specialists. In addition to the first-order quadrupole interaction, the theory also includes additional relaxation mechanisms such as the second-order quadrupole interaction and its cross correlation with shielding anisotropy. This complete theoretical treatment allows one to assess the transverse relaxation rate (thus the line width) of NMR signals from half-integer quadrupolar nuclei in solution over the entire range of motion. On the basis of this theoretical framework, we discuss general features of quadrupole-central-transition (QCT) NMR, which is a particularly powerful method of studying biomolecules in the slow motion regime. Then we review recent advances in <sup>17</sup>O QCT NMR studies of biological macromolecules in aqueous solution. The second part of the review is concerned with solid-state <sup>17</sup>O NMR studies of organic and biological molecules. As a sequel to the previous review on the same subject [G. Wu, Prog. Nucl. Magn. Reson. Spectrosc. 52 (2008) 118–169], the current review provides a complete coverage of the literature published since 2008 in this area.</p></div>","PeriodicalId":20740,"journal":{"name":"Progress in Nuclear Magnetic Resonance Spectroscopy","volume":"114 ","pages":"Pages 135-191"},"PeriodicalIF":7.3000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pnmrs.2019.06.002","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Nuclear Magnetic Resonance Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079656519300226","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 36

Abstract

This review describes the latest developments in the field of 17O NMR spectroscopy of organic and biological molecules both in aqueous solution and in the solid state. In the first part of the review, a general theoretical description of the nuclear quadrupole relaxation process in isotropic liquids is presented at a mathematical level suitable for non-specialists. In addition to the first-order quadrupole interaction, the theory also includes additional relaxation mechanisms such as the second-order quadrupole interaction and its cross correlation with shielding anisotropy. This complete theoretical treatment allows one to assess the transverse relaxation rate (thus the line width) of NMR signals from half-integer quadrupolar nuclei in solution over the entire range of motion. On the basis of this theoretical framework, we discuss general features of quadrupole-central-transition (QCT) NMR, which is a particularly powerful method of studying biomolecules in the slow motion regime. Then we review recent advances in 17O QCT NMR studies of biological macromolecules in aqueous solution. The second part of the review is concerned with solid-state 17O NMR studies of organic and biological molecules. As a sequel to the previous review on the same subject [G. Wu, Prog. Nucl. Magn. Reson. Spectrosc. 52 (2008) 118–169], the current review provides a complete coverage of the literature published since 2008 in this area.

Abstract Image

有机和生物分子在水溶液和固体状态下的核磁共振研究。
本文综述了水溶液和固态有机和生物分子的17O核磁共振光谱研究的最新进展。在回顾的第一部分中,在适合非专业人员的数学水平上提出了各向同性液体中核四极弛豫过程的一般理论描述。除了一阶四极相互作用外,该理论还包括额外的弛豫机制,如二阶四极相互作用及其与屏蔽各向异性的相互关系。这种完整的理论处理允许人们在整个运动范围内评估溶液中半整数四极核的核磁共振信号的横向弛豫率(因此线宽)。在此理论框架的基础上,我们讨论了四极-中心跃迁(QCT)核磁共振的一般特征,这是研究生物分子在慢动作状态下的一种特别强大的方法。综述了水溶液中生物大分子的17O QCT核磁共振研究进展。第二部分综述了固体17O核磁共振对有机和生物分子的研究。作为上一篇关于同一主题的评论的续篇[G.]吴,掠夺。诊断。粉剂。的原因。[光谱。52(2008)118-169],目前的综述提供了自2008年以来在该领域发表的文献的完整覆盖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.30
自引率
8.20%
发文量
12
审稿时长
62 days
期刊介绍: Progress in Nuclear Magnetic Resonance Spectroscopy publishes review papers describing research related to the theory and application of NMR spectroscopy. This technique is widely applied in chemistry, physics, biochemistry and materials science, and also in many areas of biology and medicine. The journal publishes review articles covering applications in all of these and in related subjects, as well as in-depth treatments of the fundamental theory of and instrumental developments in NMR spectroscopy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信