Concept Class Analysis: A Method for Identifying Cultural Schemas in Texts

IF 2.7 2区 社会学 Q1 SOCIOLOGY
Marshall A. Taylor, Dustin S. Stoltz
{"title":"Concept Class Analysis: A Method for Identifying Cultural Schemas in Texts","authors":"Marshall A. Taylor, Dustin S. Stoltz","doi":"10.15195/v7.a23","DOIUrl":null,"url":null,"abstract":"Recent methodological work at the intersection of culture, cognition, and computational methods has drawn attention to how cultural schemas can be 'recovered' from social survey data. Defining cultural schemas as slowly learned, implicit, and unevenly distributed relational memory structures, researchers show how schemas—or rather, the downstream consequences of people drawing upon them—can be operationalized and measured from domain-specific survey modules. Respondents can then be sorted into 'classes' on the basis of the schema to which their survey response patterns best align. In this article, we extend this 'schematic class analysis' method to text data. We introduce concept class analysis (CoCA): a hybrid model that combines word embeddings and correlational class analysis to group documents across a corpus by the similarity of schemas recovered from them. We introduce the CoCA model, illustrate its validity and utility using simulations, and conclude with considerations for future research and applications.","PeriodicalId":22029,"journal":{"name":"Sociological Science","volume":"97 3","pages":"544-569"},"PeriodicalIF":2.7000,"publicationDate":"2020-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sociological Science","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.15195/v7.a23","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIOLOGY","Score":null,"Total":0}
引用次数: 16

Abstract

Recent methodological work at the intersection of culture, cognition, and computational methods has drawn attention to how cultural schemas can be 'recovered' from social survey data. Defining cultural schemas as slowly learned, implicit, and unevenly distributed relational memory structures, researchers show how schemas—or rather, the downstream consequences of people drawing upon them—can be operationalized and measured from domain-specific survey modules. Respondents can then be sorted into 'classes' on the basis of the schema to which their survey response patterns best align. In this article, we extend this 'schematic class analysis' method to text data. We introduce concept class analysis (CoCA): a hybrid model that combines word embeddings and correlational class analysis to group documents across a corpus by the similarity of schemas recovered from them. We introduce the CoCA model, illustrate its validity and utility using simulations, and conclude with considerations for future research and applications.
概念类分析:一种识别语篇文化图式的方法
最近在文化、认知和计算方法交叉方面的方法学工作引起了人们对如何从社会调查数据中“恢复”文化图式的关注。研究人员将文化图式定义为学习缓慢、隐含且分布不均的关系记忆结构,展示了图式——或者更确切地说,人们利用它们的下游后果——是如何从特定领域的调查模块中操作和衡量的。然后,可以根据他们的调查响应模式最符合的模式,将受访者分类为“类”。在本文中,我们将这种“原理图类分析”方法扩展到文本数据。我们介绍了概念类分析(CoCA):一种混合模型,它结合了单词嵌入和相关类分析,通过从语料库中恢复的模式的相似性来对文档进行分组。我们介绍了CoCA模型,通过仿真说明了它的有效性和实用性,并总结了对未来研究和应用的考虑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sociological Science
Sociological Science Social Sciences-Social Sciences (all)
CiteScore
4.90
自引率
2.90%
发文量
13
审稿时长
6 weeks
期刊介绍: Sociological Science is an open-access, online, peer-reviewed, international journal for social scientists committed to advancing a general understanding of social processes. Sociological Science welcomes original research and commentary from all subfields of sociology, and does not privilege any particular theoretical or methodological approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信