The monodromy pairing for logarithmic 1-motifs

IF 0.8 Q2 MATHEMATICS
Jonathan Wise
{"title":"The monodromy pairing for logarithmic\n1-motifs","authors":"Jonathan Wise","doi":"10.2140/tunis.2022.4.587","DOIUrl":null,"url":null,"abstract":"We describe a 3-step filtration on all logarithmic abelian varieties with constant degeneration. The obstruction to descending this filtration, as a variegated extension, from logarithmic geometry to algebraic geometry is encoded in a bilinear pairing valued in the characteristic monoid of the base. This pairing is realized as the monodromy pairing in p-adic, l-adic, and Betti cohomolgies, and recovers the Picard-Lefschetz transformation in the case of Jacobians. The Hodge realization of the filtration is the monodromy weight filtration on the limit mixed Hodge structure.","PeriodicalId":36030,"journal":{"name":"Tunisian Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2019-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tunisian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/tunis.2022.4.587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We describe a 3-step filtration on all logarithmic abelian varieties with constant degeneration. The obstruction to descending this filtration, as a variegated extension, from logarithmic geometry to algebraic geometry is encoded in a bilinear pairing valued in the characteristic monoid of the base. This pairing is realized as the monodromy pairing in p-adic, l-adic, and Betti cohomolgies, and recovers the Picard-Lefschetz transformation in the case of Jacobians. The Hodge realization of the filtration is the monodromy weight filtration on the limit mixed Hodge structure.
对数1-基元的单配对
我们描述了对所有具有恒定退化的对数阿贝尔品种的三步过滤。作为从对数几何到代数几何的一个杂色扩展,这种过滤的下降障碍被编码在基的特征半群中的双线性配对中。该配对在p-adic、l-adic和Betti上同调中被实现为单调配对,并在Jacobians的情况下恢复了Picard-Lefschetz变换。过滤的Hodge实现是在极限混合Hodge结构上的单重过滤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tunisian Journal of Mathematics
Tunisian Journal of Mathematics Mathematics-Mathematics (all)
CiteScore
1.70
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信