Effect of Alternating Hybridisation of Fibres on the Physico - Mechanical Behaviour of Composite Materials

IF 1.1 Q3 ENGINEERING, CIVIL
N. Harb, H. Dilmi, B. Bezzazi, Kahina Hamitouche
{"title":"Effect of Alternating Hybridisation of Fibres on the Physico - Mechanical Behaviour of Composite Materials","authors":"N. Harb, H. Dilmi, B. Bezzazi, Kahina Hamitouche","doi":"10.2478/cee-2023-0036","DOIUrl":null,"url":null,"abstract":"Abstract The performance/weight ratio of fiber reinforced polymer matrix composites makes them the material of choice for structural applications in many fields such as aerospace, aeronautics, automotive and civil engineering...etc. In polymer matrix composites, the fibers used as reinforcement are mainly synthetic fibers such as carbon and/or glass fibers. To ensure the low cost of using fiber-reinforced materials in motor vehicles, it is proposed to selectively incorporate carbon fibers to enhance glass fiber composites along the roadway, and to enhance glass fiber composites along the main load path. For this purpose, we conducted a behavioral study of hybrid epoxy thermoset polymer matrix laminates to highlight the influence of alternate hybridization of glass and carbon fibers on the physical-mechanical behavior of the materials.The results obtained show that the alternated hybridation of the fibers has a significant influence on the tensile properties; and it affected the density, hardness and flexural properties significantly.","PeriodicalId":42034,"journal":{"name":"Civil and Environmental Engineering","volume":"99 3","pages":"406 - 413"},"PeriodicalIF":1.1000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Civil and Environmental Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/cee-2023-0036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The performance/weight ratio of fiber reinforced polymer matrix composites makes them the material of choice for structural applications in many fields such as aerospace, aeronautics, automotive and civil engineering...etc. In polymer matrix composites, the fibers used as reinforcement are mainly synthetic fibers such as carbon and/or glass fibers. To ensure the low cost of using fiber-reinforced materials in motor vehicles, it is proposed to selectively incorporate carbon fibers to enhance glass fiber composites along the roadway, and to enhance glass fiber composites along the main load path. For this purpose, we conducted a behavioral study of hybrid epoxy thermoset polymer matrix laminates to highlight the influence of alternate hybridization of glass and carbon fibers on the physical-mechanical behavior of the materials.The results obtained show that the alternated hybridation of the fibers has a significant influence on the tensile properties; and it affected the density, hardness and flexural properties significantly.
纤维交替杂交对复合材料物理力学性能的影响
摘要纤维增强聚合物基复合材料的性能/重量比使其成为航空航天、航空航天、汽车和土木工程等许多领域结构应用的首选材料。在聚合物基复合材料中,用作增强的纤维主要是合成纤维,如碳纤维和/或玻璃纤维。为保证纤维增强材料在机动车上的低成本使用,提出了选择性地加入碳纤维,沿道路增强玻璃纤维复合材料,沿主荷载路径增强玻璃纤维复合材料。为此,我们对杂化环氧热固性聚合物基层压板进行了行为研究,以突出玻璃纤维和碳纤维交替杂交对材料物理力学行为的影响。结果表明:纤维的交变杂化对拉伸性能有显著影响;对材料的密度、硬度和抗弯性能有显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
58.30%
发文量
69
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信