A relatively finite-to-finite universal but not Q-universal quasivariety

IF 0.6 4区 数学 Q3 MATHEMATICS
M. E. Adams, W. Dziobiak, H. P. Sankappanavar
{"title":"A relatively finite-to-finite universal but not Q-universal quasivariety","authors":"M. E. Adams,&nbsp;W. Dziobiak,&nbsp;H. P. Sankappanavar","doi":"10.1007/s00012-022-00782-5","DOIUrl":null,"url":null,"abstract":"<div><p>It was proved by the authors that the quasivariety of quasi-Stone algebras <span>\\(\\mathbf {Q}_{\\mathbf {1,2}}\\)</span> is finite-to-finite universal relative to the quasivariety <span>\\(\\mathbf {Q}_{\\mathbf {2,1}}\\)</span> contained in <span>\\(\\mathbf {Q}_{\\mathbf {1,2}}\\)</span>. In this paper, we prove that <span>\\(\\mathbf {Q}_{\\mathbf {1,2}}\\)</span> is not Q-universal. This provides a positive answer to the following long standing open question: Is there a quasivariety that is relatively finite-to-finite universal but is not Q-universal?</p></div>","PeriodicalId":50827,"journal":{"name":"Algebra Universalis","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00012-022-00782-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra Universalis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00012-022-00782-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

It was proved by the authors that the quasivariety of quasi-Stone algebras \(\mathbf {Q}_{\mathbf {1,2}}\) is finite-to-finite universal relative to the quasivariety \(\mathbf {Q}_{\mathbf {2,1}}\) contained in \(\mathbf {Q}_{\mathbf {1,2}}\). In this paper, we prove that \(\mathbf {Q}_{\mathbf {1,2}}\) is not Q-universal. This provides a positive answer to the following long standing open question: Is there a quasivariety that is relatively finite-to-finite universal but is not Q-universal?

Abstract Image

一个相对有限到有限的泛但不是q -泛的拟变
作者证明了拟Stone代数的拟变种{Q}_{\mathbf{1,2}})是有限到有限泛的,相对于拟变种{Q}_{\mathbf{2,1}}\){Q}_{\mathbf{1,2}})。本文证明了\(\mathbf{Q}_{\mathbf{1,2}})不是Q泛的。这为以下长期存在的开放问题提供了一个积极的答案:是否存在一个相对有限到有限泛但不是Q-泛的拟变种?
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algebra Universalis
Algebra Universalis 数学-数学
CiteScore
1.00
自引率
16.70%
发文量
34
审稿时长
3 months
期刊介绍: Algebra Universalis publishes papers in universal algebra, lattice theory, and related fields. In a pragmatic way, one could define the areas of interest of the journal as the union of the areas of interest of the members of the Editorial Board. In addition to research papers, we are also interested in publishing high quality survey articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信