V. A. Davankov, Z. K. Blinnikova, A. Yu. Popov, Yu. A. Davidovich, M. P. Tsyurupa
{"title":"Revisiting the Problem of Adsorption/Desorption Isotherms on Hypercrosslinked Polymers","authors":"V. A. Davankov, Z. K. Blinnikova, A. Yu. Popov, Yu. A. Davidovich, M. P. Tsyurupa","doi":"10.1134/S0965545X23700682","DOIUrl":null,"url":null,"abstract":"<p>This contribution is focused on the examination of adsorption/desorptiom isotherms for nitrogen at 77 K and benzene vapors at 293 K on various hypercrosslinked polystyrene (HP) resins. All isotherms for N<sub>2</sub> are identical in their shapes and are characterized by a steep rise of the adsorption branch at low <i>p</i>/<i>p</i><sub>0</sub> followed by a less steep hoisting of the branch with increasing relative pressure. Adsorption isotherm for benzene demonstrates an ill-defined convex initial part followed by a significant rise in network loading with further increase in relative pressure. In the both cases we assume the rise in adsorption to reflect the relaxation of inner stresses with the simultaneous increase in the volume of networks. The distinction between the two types of isotherms is conditioned upon the fact that in the networks cooled down to 77 K stresses are stronger and the initial volume of the sample is more compressed. The amounts of nitrogen and benzene absorbed at relative pressure of 0.95 are the same order of magnitude, indicating similar swelling of HP in the both adsorbates. The adsorption behaviors of hypercrosslinked PIM-type polymers are governed by the same effects.</p>","PeriodicalId":738,"journal":{"name":"Polymer Science, Series A","volume":"65 1","pages":"15 - 21"},"PeriodicalIF":1.0000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Science, Series A","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1134/S0965545X23700682","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This contribution is focused on the examination of adsorption/desorptiom isotherms for nitrogen at 77 K and benzene vapors at 293 K on various hypercrosslinked polystyrene (HP) resins. All isotherms for N2 are identical in their shapes and are characterized by a steep rise of the adsorption branch at low p/p0 followed by a less steep hoisting of the branch with increasing relative pressure. Adsorption isotherm for benzene demonstrates an ill-defined convex initial part followed by a significant rise in network loading with further increase in relative pressure. In the both cases we assume the rise in adsorption to reflect the relaxation of inner stresses with the simultaneous increase in the volume of networks. The distinction between the two types of isotherms is conditioned upon the fact that in the networks cooled down to 77 K stresses are stronger and the initial volume of the sample is more compressed. The amounts of nitrogen and benzene absorbed at relative pressure of 0.95 are the same order of magnitude, indicating similar swelling of HP in the both adsorbates. The adsorption behaviors of hypercrosslinked PIM-type polymers are governed by the same effects.
期刊介绍:
Polymer Science, Series A is a journal published in collaboration with the Russian Academy of Sciences. Series A includes experimental and theoretical papers and reviews devoted to physicochemical studies of the structure and properties of polymers (6 issues a year). All journal series present original papers and reviews covering all fundamental aspects of macromolecular science. Contributions should be of marked novelty and interest for a broad readership. Articles may be written in English or Russian regardless of country and nationality of authors. All manuscripts are peer reviewed. Online submission via Internet to the Series A, B, and C is available at http://polymsci.ru.