Synthesis of Data Science Competency for Higher Education Students

Pub Date : 2022-01-31 DOI:10.46300/9109.2022.16.11
Sajeewan Pratsri, P. Nilsook, P. Wannapiroon
{"title":"Synthesis of Data Science Competency for Higher Education Students","authors":"Sajeewan Pratsri, P. Nilsook, P. Wannapiroon","doi":"10.46300/9109.2022.16.11","DOIUrl":null,"url":null,"abstract":"The research aims to Data Science Performance Synthesis for Higher Education Students and Data Science Performance Suitability Assessment for Higher Education Students. The research instruments include 1) data science performance synthesis tables, 2) expert interviews in data science performance assessments, 3) expert questionnaires to assess the consistency of data science performance. Analytical methods include 1) analyzing the frequency obtained from the content analysis table, 2) synthesis of content from interviews, 3) analyzing performance consistency, and components of data science performance, from data science synthesis for higher education students, finding that data performance for higher education students consists of five performances: 1) programming skills, 2)elementary statistics, 3) fundamentals of data science, 4) data preparation, and 5) Big data analytics.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46300/9109.2022.16.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The research aims to Data Science Performance Synthesis for Higher Education Students and Data Science Performance Suitability Assessment for Higher Education Students. The research instruments include 1) data science performance synthesis tables, 2) expert interviews in data science performance assessments, 3) expert questionnaires to assess the consistency of data science performance. Analytical methods include 1) analyzing the frequency obtained from the content analysis table, 2) synthesis of content from interviews, 3) analyzing performance consistency, and components of data science performance, from data science synthesis for higher education students, finding that data performance for higher education students consists of five performances: 1) programming skills, 2)elementary statistics, 3) fundamentals of data science, 4) data preparation, and 5) Big data analytics.
分享
查看原文
高等教育学生数据科学能力的综合
本研究旨在对高等教育学生的数据科学绩效综合和高等教育学生数据科学绩效适宜性评估进行研究。研究工具包括1)数据科学绩效综合表,2)数据科学性能评估中的专家访谈,3)评估数据科学绩效一致性的专家问卷。分析方法包括1)分析从内容分析表中获得的频率,2)从访谈中综合内容,3)从高等教育学生的数据科学综合中分析表现一致性和数据科学表现的组成部分,发现高等教育学生数据表现由五个表现组成:1)编程技能,2)基础统计学,3)数据科学基础,4)数据准备,5)大数据分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信