Single crystals of phenakite-like Be2(Si1−xGex)O4 solid solution: novel experimental data on hydrothermal crystal growth, X-ray diffraction and Raman spectroscopy study
IF 1.2 4区 地球科学Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
Valentin Kovalev, Victor Thomas, Tatiana Setkova, Natalia Zubkova, Anna Spivak, Dmitry Fursenko, Vasiliy Yapaskurt, Alexander Antipin, Elena Borovikova
{"title":"Single crystals of phenakite-like Be2(Si1−xGex)O4 solid solution: novel experimental data on hydrothermal crystal growth, X-ray diffraction and Raman spectroscopy study","authors":"Valentin Kovalev, Victor Thomas, Tatiana Setkova, Natalia Zubkova, Anna Spivak, Dmitry Fursenko, Vasiliy Yapaskurt, Alexander Antipin, Elena Borovikova","doi":"10.1007/s00269-023-01245-6","DOIUrl":null,"url":null,"abstract":"<div><p>The pioneering hydrothermal synthesis of the compound Be<sub>2</sub>[(Si<sub>1−<i>x</i></sub>Ge<sub><i>x</i></sub>)O<sub>4</sub>] with a phenakite structure (the size of individual crystals up to 1 mm) was carried out in acidic alkaline-containing fluoride solutions at a temperature of 625 °C and a pressure of ~ 150 MPa. Uniform (<i>x = </i>0, 0.80 and 1) and zonal (<i>x = </i>0.04 − 0.025) Be<sub>2</sub>[(Si<sub>1−<i>x</i></sub>Ge<sub><i>x</i></sub>)O<sub>4</sub>] crystals synthesized in the Li-containing mineralizer were obtained. The possibility of formation of intermediate compounds under hydrothermal conditions remains an open question. In the Na-containing mineralizer, only Be<sub>2</sub>SiO<sub>4</sub> crystallizes due to the formation of insoluble sodium germanates. The fading of formation of Be<sub>2</sub>[(Si<sub>1−<i>x</i></sub>Ge<sub><i>x</i></sub>)O<sub>4</sub>] was determined with the use of technique of temperature-induced zoning and can be explained by the fact that newly formed crystals screen the surface of the initial BeO. The instantaneous growth rates of the prismatic faces of Ge-substituted phenakite crystals, decreasing from 18 microns/day to 2, were determined using the technique of temperature-induced zonality. The crystal structures of Be<sub>2</sub>[(Si<sub>1−<i>x</i></sub>Ge<sub><i>x</i></sub>)O<sub>4</sub>] samples with <i>x = </i>0, 0.80 and 1 were refined by direct X-ray diffraction methods, and the linear dependence of the unit cell parameters and bond lengths on the germanium content has been quantitively described. First Raman spectroscopy study of Be<sub>2</sub>[(Si<sub>1−<i>x</i></sub>Ge<sub><i>x</i></sub>)O<sub>4</sub>] on zonal crystals indicated the linear shift of vibration bands in Raman spectra to a lower frequencies with an increase in germanium concentration (<i>x</i> up to 0.25). A new Raman band of Ge–O stretching vibrations at ~ 1115 cm<sup>−1</sup>, which is not common for natural and synthetic germanium-free phenakites, was observed.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":"50 3","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of Minerals","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00269-023-01245-6","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
The pioneering hydrothermal synthesis of the compound Be2[(Si1−xGex)O4] with a phenakite structure (the size of individual crystals up to 1 mm) was carried out in acidic alkaline-containing fluoride solutions at a temperature of 625 °C and a pressure of ~ 150 MPa. Uniform (x = 0, 0.80 and 1) and zonal (x = 0.04 − 0.025) Be2[(Si1−xGex)O4] crystals synthesized in the Li-containing mineralizer were obtained. The possibility of formation of intermediate compounds under hydrothermal conditions remains an open question. In the Na-containing mineralizer, only Be2SiO4 crystallizes due to the formation of insoluble sodium germanates. The fading of formation of Be2[(Si1−xGex)O4] was determined with the use of technique of temperature-induced zoning and can be explained by the fact that newly formed crystals screen the surface of the initial BeO. The instantaneous growth rates of the prismatic faces of Ge-substituted phenakite crystals, decreasing from 18 microns/day to 2, were determined using the technique of temperature-induced zonality. The crystal structures of Be2[(Si1−xGex)O4] samples with x = 0, 0.80 and 1 were refined by direct X-ray diffraction methods, and the linear dependence of the unit cell parameters and bond lengths on the germanium content has been quantitively described. First Raman spectroscopy study of Be2[(Si1−xGex)O4] on zonal crystals indicated the linear shift of vibration bands in Raman spectra to a lower frequencies with an increase in germanium concentration (x up to 0.25). A new Raman band of Ge–O stretching vibrations at ~ 1115 cm−1, which is not common for natural and synthetic germanium-free phenakites, was observed.
期刊介绍:
Physics and Chemistry of Minerals is an international journal devoted to publishing articles and short communications of physical or chemical studies on minerals or solids related to minerals. The aim of the journal is to support competent interdisciplinary work in mineralogy and physics or chemistry. Particular emphasis is placed on applications of modern techniques or new theories and models to interpret atomic structures and physical or chemical properties of minerals. Some subjects of interest are:
-Relationships between atomic structure and crystalline state (structures of various states, crystal energies, crystal growth, thermodynamic studies, phase transformations, solid solution, exsolution phenomena, etc.)
-General solid state spectroscopy (ultraviolet, visible, infrared, Raman, ESCA, luminescence, X-ray, electron paramagnetic resonance, nuclear magnetic resonance, gamma ray resonance, etc.)
-Experimental and theoretical analysis of chemical bonding in minerals (application of crystal field, molecular orbital, band theories, etc.)
-Physical properties (magnetic, mechanical, electric, optical, thermodynamic, etc.)
-Relations between thermal expansion, compressibility, elastic constants, and fundamental properties of atomic structure, particularly as applied to geophysical problems
-Electron microscopy in support of physical and chemical studies
-Computational methods in the study of the structure and properties of minerals
-Mineral surfaces (experimental methods, structure and properties)