Multicontrast Pocket Colposcopy Cervical Cancer Diagnostic Algorithm for Referral Populations.

IF 5 Q1 ENGINEERING, BIOMEDICAL
BME frontiers Pub Date : 2022-08-25 eCollection Date: 2022-01-01 DOI:10.34133/2022/9823184
Erica Skerrett, Zichen Miao, Mercy N Asiedu, Megan Richards, Brian Crouch, Guillermo Sapiro, Qiang Qiu, Nirmala Ramanujam
{"title":"Multicontrast Pocket Colposcopy Cervical Cancer Diagnostic Algorithm for Referral Populations.","authors":"Erica Skerrett, Zichen Miao, Mercy N Asiedu, Megan Richards, Brian Crouch, Guillermo Sapiro, Qiang Qiu, Nirmala Ramanujam","doi":"10.34133/2022/9823184","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective and Impact Statement</i>. We use deep learning models to classify cervix images-collected with a low-cost, portable Pocket colposcope-with biopsy-confirmed high-grade precancer and cancer. We boost classification performance on a screened-positive population by using a class-balanced loss and incorporating green-light colposcopy image pairs, which come at no additional cost to the provider. <i>Introduction</i>. Because the majority of the 300,000 annual deaths due to cervical cancer occur in countries with low- or middle-Human Development Indices, an automated classification algorithm could overcome limitations caused by the low prevalence of trained professionals and diagnostic variability in provider visual interpretations. <i>Methods</i>. Our dataset consists of cervical images (<math><mi>n</mi><mo>=</mo><mn>1,760</mn></math>) from 880 patient visits. After optimizing the network architecture and incorporating a weighted loss function, we explore two methods of incorporating green light image pairs into the network to boost the classification performance and sensitivity of our model on a test set. <i>Results</i>. We achieve an area under the receiver-operator characteristic curve, sensitivity, and specificity of 0.87, 75%, and 88%, respectively. The addition of the class-balanced loss and green light cervical contrast to a Resnet-18 backbone results in a 2.5 times improvement in sensitivity. <i>Conclusion</i>. Our methodology, which has already been tested on a prescreened population, can boost classification performance and, in the future, be coupled with Pap smear or HPV triaging, thereby broadening access to early detection of precursor lesions before they advance to cancer.</p>","PeriodicalId":72430,"journal":{"name":"BME frontiers","volume":"2022 ","pages":"9823184"},"PeriodicalIF":5.0000,"publicationDate":"2022-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521679/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BME frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/2022/9823184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objective and Impact Statement. We use deep learning models to classify cervix images-collected with a low-cost, portable Pocket colposcope-with biopsy-confirmed high-grade precancer and cancer. We boost classification performance on a screened-positive population by using a class-balanced loss and incorporating green-light colposcopy image pairs, which come at no additional cost to the provider. Introduction. Because the majority of the 300,000 annual deaths due to cervical cancer occur in countries with low- or middle-Human Development Indices, an automated classification algorithm could overcome limitations caused by the low prevalence of trained professionals and diagnostic variability in provider visual interpretations. Methods. Our dataset consists of cervical images (n=1,760) from 880 patient visits. After optimizing the network architecture and incorporating a weighted loss function, we explore two methods of incorporating green light image pairs into the network to boost the classification performance and sensitivity of our model on a test set. Results. We achieve an area under the receiver-operator characteristic curve, sensitivity, and specificity of 0.87, 75%, and 88%, respectively. The addition of the class-balanced loss and green light cervical contrast to a Resnet-18 backbone results in a 2.5 times improvement in sensitivity. Conclusion. Our methodology, which has already been tested on a prescreened population, can boost classification performance and, in the future, be coupled with Pap smear or HPV triaging, thereby broadening access to early detection of precursor lesions before they advance to cancer.

Abstract Image

Abstract Image

Abstract Image

转诊人群的多对照袖珍阴道镜癌症宫颈癌诊断算法。
目标和影响声明。我们使用深度学习模型对宫颈图像进行分类,这些图像是用低成本、便携式袖珍阴道镜收集的,带有生物系统证实的高级癌前病变和癌症。我们通过使用类平衡损失和结合绿光阴道镜图像对来提高筛查阳性人群的分类性能,这对提供者来说没有额外的成本。介绍由于每年因宫颈癌症死亡的30万人中,大多数发生在人类发展指数较低或中等的国家,因此自动分类算法可以克服训练有素的专业人员的低发病率和提供者视觉解释的诊断可变性所造成的限制。方法。我们的数据集包括来自880名患者就诊的宫颈图像(n=1760)。在优化网络架构并引入加权损失函数后,我们探索了将绿光图像对引入网络的两种方法,以提高我们的模型在测试集上的分类性能和灵敏度。后果我们实现了受试者-操作者特征曲线下的面积、灵敏度和特异性分别为0.87、75%和88%。在Resnet-18主干上添加类平衡损失和绿光宫颈造影剂,可使灵敏度提高2.5倍。结论我们的方法已经在预先筛选的人群中进行了测试,可以提高分类性能,并在未来与巴氏涂片或HPV试验相结合,从而在前驱病变发展为癌症之前扩大早期检测的范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信