Label-Free White Blood Cell Classification Using Refractive Index Tomography and Deep Learning.

IF 5 Q1 ENGINEERING, BIOMEDICAL
BME frontiers Pub Date : 2021-07-30 eCollection Date: 2021-01-01 DOI:10.34133/2021/9893804
DongHun Ryu, Jinho Kim, Daejin Lim, Hyun-Seok Min, In Young Yoo, Duck Cho, YongKeun Park
{"title":"Label-Free White Blood Cell Classification Using Refractive Index Tomography and Deep Learning.","authors":"DongHun Ryu,&nbsp;Jinho Kim,&nbsp;Daejin Lim,&nbsp;Hyun-Seok Min,&nbsp;In Young Yoo,&nbsp;Duck Cho,&nbsp;YongKeun Park","doi":"10.34133/2021/9893804","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective and Impact Statement</i>. We propose a rapid and accurate blood cell identification method exploiting deep learning and label-free refractive index (RI) tomography. Our computational approach that fully utilizes tomographic information of bone marrow (BM) white blood cell (WBC) enables us to not only classify the blood cells with deep learning but also quantitatively study their morphological and biochemical properties for hematology research. <i>Introduction</i>. Conventional methods for examining blood cells, such as blood smear analysis by medical professionals and fluorescence-activated cell sorting, require significant time, costs, and domain knowledge that could affect test results. While label-free imaging techniques that use a specimen's intrinsic contrast (e.g., multiphoton and Raman microscopy) have been used to characterize blood cells, their imaging procedures and instrumentations are relatively time-consuming and complex. <i>Methods</i>. The RI tomograms of the BM WBCs are acquired via Mach-Zehnder interferometer-based tomographic microscope and classified by a 3D convolutional neural network. We test our deep learning classifier for the four types of bone marrow WBC collected from healthy donors (<math><mi>n</mi><mo>=</mo><mn>10</mn></math>): monocyte, myelocyte, B lymphocyte, and T lymphocyte. The quantitative parameters of WBC are directly obtained from the tomograms. <i>Results</i>. Our results show >99% accuracy for the binary classification of myeloids and lymphoids and >96% accuracy for the four-type classification of B and T lymphocytes, monocyte, and myelocytes. The feature learning capability of our approach is visualized via an unsupervised dimension reduction technique. <i>Conclusion</i>. We envision that the proposed cell classification framework can be easily integrated into existing blood cell investigation workflows, providing cost-effective and rapid diagnosis for hematologic malignancy.</p>","PeriodicalId":72430,"journal":{"name":"BME frontiers","volume":"2021 ","pages":"9893804"},"PeriodicalIF":5.0000,"publicationDate":"2021-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521749/pdf/","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BME frontiers","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.34133/2021/9893804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 20

Abstract

Objective and Impact Statement. We propose a rapid and accurate blood cell identification method exploiting deep learning and label-free refractive index (RI) tomography. Our computational approach that fully utilizes tomographic information of bone marrow (BM) white blood cell (WBC) enables us to not only classify the blood cells with deep learning but also quantitatively study their morphological and biochemical properties for hematology research. Introduction. Conventional methods for examining blood cells, such as blood smear analysis by medical professionals and fluorescence-activated cell sorting, require significant time, costs, and domain knowledge that could affect test results. While label-free imaging techniques that use a specimen's intrinsic contrast (e.g., multiphoton and Raman microscopy) have been used to characterize blood cells, their imaging procedures and instrumentations are relatively time-consuming and complex. Methods. The RI tomograms of the BM WBCs are acquired via Mach-Zehnder interferometer-based tomographic microscope and classified by a 3D convolutional neural network. We test our deep learning classifier for the four types of bone marrow WBC collected from healthy donors (n=10): monocyte, myelocyte, B lymphocyte, and T lymphocyte. The quantitative parameters of WBC are directly obtained from the tomograms. Results. Our results show >99% accuracy for the binary classification of myeloids and lymphoids and >96% accuracy for the four-type classification of B and T lymphocytes, monocyte, and myelocytes. The feature learning capability of our approach is visualized via an unsupervised dimension reduction technique. Conclusion. We envision that the proposed cell classification framework can be easily integrated into existing blood cell investigation workflows, providing cost-effective and rapid diagnosis for hematologic malignancy.

Abstract Image

Abstract Image

Abstract Image

使用折射率层析成像和深度学习的无标记白细胞分类。
目标和影响声明。我们提出了一种利用深度学习和无标记折射率(RI)断层扫描的快速准确的血细胞识别方法。我们的计算方法充分利用了骨髓(BM)白细胞(WBC)的断层摄影信息,使我们不仅能够通过深度学习对血细胞进行分类,还能够定量研究其形态和生化特性,用于血液学研究。介绍检查血细胞的常规方法,如医学专业人员的血液涂片分析和荧光激活细胞分选,需要大量的时间、成本和领域知识,这可能会影响测试结果。虽然使用样本固有对比度的无标记成像技术(如多光子和拉曼显微镜)已被用于表征血细胞,但其成像程序和仪器相对耗时且复杂。方法。BM WBC的RI断层图像是通过基于Mach-Zehnder干涉仪的断层显微镜获取的,并通过3D卷积神经网络进行分类。我们对从健康捐献者(n=10)收集的四种类型的骨髓WBC测试了我们的深度学习分类器:单核细胞、骨髓细胞、B淋巴细胞和T淋巴细胞。WBC的定量参数直接从断层图像中获得。后果我们的结果显示,骨髓细胞和淋巴细胞的二元分类准确率>99%,B和T淋巴细胞、单核细胞和骨髓细胞的四种类型分类准确率>96%。我们的方法的特征学习能力是通过无监督降维技术可视化的。结论我们设想,所提出的细胞分类框架可以很容易地集成到现有的血细胞研究工作流程中,为血液系统恶性肿瘤提供经济高效的快速诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信