{"title":"When Hillclimbers Beat Genetic Algorithms in Multimodal Optimization","authors":"Fernando G. Lobo;Mosab Bazargani","doi":"10.1162/evco_a_00312","DOIUrl":null,"url":null,"abstract":"This article investigates the performance of multistart next ascent hillclimbing and well-known evolutionary algorithms incorporating diversity preservation techniques on instances of the multimodal problem generator. This generator induces a class of problems in the bitstring domain which is interesting to study from a theoretical perspective in the context of multimodal optimization, as it is a generalization of the classical OneMax and TwoMax functions for an arbitrary number of peaks. An average-case runtime analysis for multistart next ascent hillclimbing is presented for uniformly distributed equal-height instances of this class of problems. It is shown empirically that conventional niching and mating restriction techniques incorporated in an evolutionary algorithm are not sufficient to make them competitive with the hillclimbing strategy. We conjecture the reason for this behavior is the lack of structure in the space of local optima on instances of this problem class, which makes an optimization algorithm unable to exploit information from one optimum to infer where another optimum might be. When no such structure exists, it seems that the best strategy for discovering all optima is a brute-force one. Overall, our study gives insights with respect to the adequacy of hillclimbers and evolutionary algorithms for multimodal optimization, depending on properties of the fitness landscape.","PeriodicalId":50470,"journal":{"name":"Evolutionary Computation","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10301857/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 4
Abstract
This article investigates the performance of multistart next ascent hillclimbing and well-known evolutionary algorithms incorporating diversity preservation techniques on instances of the multimodal problem generator. This generator induces a class of problems in the bitstring domain which is interesting to study from a theoretical perspective in the context of multimodal optimization, as it is a generalization of the classical OneMax and TwoMax functions for an arbitrary number of peaks. An average-case runtime analysis for multistart next ascent hillclimbing is presented for uniformly distributed equal-height instances of this class of problems. It is shown empirically that conventional niching and mating restriction techniques incorporated in an evolutionary algorithm are not sufficient to make them competitive with the hillclimbing strategy. We conjecture the reason for this behavior is the lack of structure in the space of local optima on instances of this problem class, which makes an optimization algorithm unable to exploit information from one optimum to infer where another optimum might be. When no such structure exists, it seems that the best strategy for discovering all optima is a brute-force one. Overall, our study gives insights with respect to the adequacy of hillclimbers and evolutionary algorithms for multimodal optimization, depending on properties of the fitness landscape.
期刊介绍:
Evolutionary Computation is a leading journal in its field. It provides an international forum for facilitating and enhancing the exchange of information among researchers involved in both the theoretical and practical aspects of computational systems drawing their inspiration from nature, with particular emphasis on evolutionary models of computation such as genetic algorithms, evolutionary strategies, classifier systems, evolutionary programming, and genetic programming. It welcomes articles from related fields such as swarm intelligence (e.g. Ant Colony Optimization and Particle Swarm Optimization), and other nature-inspired computation paradigms (e.g. Artificial Immune Systems). As well as publishing articles describing theoretical and/or experimental work, the journal also welcomes application-focused papers describing breakthrough results in an application domain or methodological papers where the specificities of the real-world problem led to significant algorithmic improvements that could possibly be generalized to other areas.