Mackenzie Philips, Sarah M Schneck, Deborah F Levy, Stephen M Wilson
{"title":"Modality-Specificity of the Neural Correlates of Linguistic and Non-Linguistic Demand.","authors":"Mackenzie Philips, Sarah M Schneck, Deborah F Levy, Stephen M Wilson","doi":"10.1162/nol_a_00114","DOIUrl":null,"url":null,"abstract":"<p><p>Imaging studies of language processing in clinical populations can be complicated to interpret for several reasons, one being the difficulty of matching the effortfulness of processing across individuals or tasks. To better understand how effortful linguistic processing is reflected in functional activity, we investigated the neural correlates of task difficulty in linguistic and non-linguistic contexts in the auditory modality and then compared our findings to a recent analogous experiment in the visual modality in a different cohort. Nineteen neurologically normal individuals were scanned with fMRI as they performed a linguistic task (semantic matching) and a non-linguistic task (melodic matching), each with two levels of difficulty. We found that left hemisphere frontal and temporal language regions, as well as the right inferior frontal gyrus, were modulated by linguistic demand and not by non-linguistic demand. This was broadly similar to what was previously observed in the visual modality. In contrast, the multiple demand (MD) network, a set of brain regions thought to support cognitive flexibility in many contexts, was modulated neither by linguistic demand nor by non-linguistic demand in the auditory modality. This finding was in striking contradistinction to what was previously observed in the visual modality, where the MD network was robustly modulated by both linguistic and non-linguistic demand. Our findings suggest that while the language network is modulated by linguistic demand irrespective of modality, modulation of the MD network by linguistic demand is not inherent to linguistic processing, but rather depends on specific task factors.</p>","PeriodicalId":34845,"journal":{"name":"Neurobiology of Language","volume":"4 4","pages":"516-535"},"PeriodicalIF":3.6000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575553/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Language","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1162/nol_a_00114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"LINGUISTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Imaging studies of language processing in clinical populations can be complicated to interpret for several reasons, one being the difficulty of matching the effortfulness of processing across individuals or tasks. To better understand how effortful linguistic processing is reflected in functional activity, we investigated the neural correlates of task difficulty in linguistic and non-linguistic contexts in the auditory modality and then compared our findings to a recent analogous experiment in the visual modality in a different cohort. Nineteen neurologically normal individuals were scanned with fMRI as they performed a linguistic task (semantic matching) and a non-linguistic task (melodic matching), each with two levels of difficulty. We found that left hemisphere frontal and temporal language regions, as well as the right inferior frontal gyrus, were modulated by linguistic demand and not by non-linguistic demand. This was broadly similar to what was previously observed in the visual modality. In contrast, the multiple demand (MD) network, a set of brain regions thought to support cognitive flexibility in many contexts, was modulated neither by linguistic demand nor by non-linguistic demand in the auditory modality. This finding was in striking contradistinction to what was previously observed in the visual modality, where the MD network was robustly modulated by both linguistic and non-linguistic demand. Our findings suggest that while the language network is modulated by linguistic demand irrespective of modality, modulation of the MD network by linguistic demand is not inherent to linguistic processing, but rather depends on specific task factors.