Zhuo Liu, Mahmoud Al-Sarayreh, Cong Xu, Federico Tomasetto, Yanjie Li
{"title":"<i>ExtSpecR</i>: An R Package and Tool for Extracting Tree Spectra from UAV-Based Remote Sensing.","authors":"Zhuo Liu, Mahmoud Al-Sarayreh, Cong Xu, Federico Tomasetto, Yanjie Li","doi":"10.34133/plantphenomics.0103","DOIUrl":null,"url":null,"abstract":"<p><p>The development of unmanned aerial vehicle (UAV) remote sensing has been increasingly applied in forestry for high-throughput and rapid acquisition of tree phenomics traits for various research areas. However, the detection of individual trees and the extraction of their spectral data remain a challenge, often requiring manual annotation. Although several software-based solutions have been developed, they are far from being widely adopted. This paper presents <i>ExtSpecR</i>, an open-source tool for spectral extraction of a single tree in forestry with an easy-to-use interactive web application. <i>ExtSpecR</i> reduces the time required for single tree detection and annotation and simplifies the entire process of spectral and spatial feature extraction from UAV-based imagery. In addition, <i>ExtSpecR</i> provides several functionalities with interactive dashboards that allow users to maximize the quality of information extracted from UAV data. <i>ExtSpecR</i> can promote the practical use of UAV remote sensing data among forest ecology and tree breeding researchers and help them to further understand the relationships between tree growth and its physiological traits.</p>","PeriodicalId":20318,"journal":{"name":"Plant Phenomics","volume":null,"pages":null},"PeriodicalIF":7.6000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10578298/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Phenomics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.34133/plantphenomics.0103","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
The development of unmanned aerial vehicle (UAV) remote sensing has been increasingly applied in forestry for high-throughput and rapid acquisition of tree phenomics traits for various research areas. However, the detection of individual trees and the extraction of their spectral data remain a challenge, often requiring manual annotation. Although several software-based solutions have been developed, they are far from being widely adopted. This paper presents ExtSpecR, an open-source tool for spectral extraction of a single tree in forestry with an easy-to-use interactive web application. ExtSpecR reduces the time required for single tree detection and annotation and simplifies the entire process of spectral and spatial feature extraction from UAV-based imagery. In addition, ExtSpecR provides several functionalities with interactive dashboards that allow users to maximize the quality of information extracted from UAV data. ExtSpecR can promote the practical use of UAV remote sensing data among forest ecology and tree breeding researchers and help them to further understand the relationships between tree growth and its physiological traits.
期刊介绍:
Plant Phenomics is an Open Access journal published in affiliation with the State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University (NAU) and published by the American Association for the Advancement of Science (AAAS). Like all partners participating in the Science Partner Journal program, Plant Phenomics is editorially independent from the Science family of journals.
The mission of Plant Phenomics is to publish novel research that will advance all aspects of plant phenotyping from the cell to the plant population levels using innovative combinations of sensor systems and data analytics. Plant Phenomics aims also to connect phenomics to other science domains, such as genomics, genetics, physiology, molecular biology, bioinformatics, statistics, mathematics, and computer sciences. Plant Phenomics should thus contribute to advance plant sciences and agriculture/forestry/horticulture by addressing key scientific challenges in the area of plant phenomics.
The scope of the journal covers the latest technologies in plant phenotyping for data acquisition, data management, data interpretation, modeling, and their practical applications for crop cultivation, plant breeding, forestry, horticulture, ecology, and other plant-related domains.