A Graphene Oxide-based Assay for Sensitive Osteonecrosis of the Femoral Head (ONFH) related microRNA Detection via Exonuclease-III Assisted Dual Signal Cycle.
{"title":"A Graphene Oxide-based Assay for Sensitive Osteonecrosis of the Femoral Head (ONFH) related microRNA Detection via Exonuclease-III Assisted Dual Signal Cycle.","authors":"Jian Yu, Kun Han","doi":"10.1007/s12033-023-00924-7","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate detection of circulating microRNAs (miRNAs) plays a vital role in the diagnosis of various diseases. The current miRNA detection methods, however, are widely criticized for their low sensitivity and excessive background signal. Herein, we propose a graphene oxide (GO) based fluorescent biosensor for sensitive and reliable miRNA analysis with a low background signal by utilizing exonuclease III (Exo III)-assisted target recycling and hybridization chain reaction (HCR). To initiate Exo-III-assisted dual signal cycles, a hairpin DNA probe (H probe) was developed for selective miRNA binding. Dye quenching occurred when carboxyfluorescein (FAM)-labeled hairpins (HP1 and HP1) were unable to bind to their intended target and instead adsorb onto the surface of GO via p-stacking interactions. Exo III sequentially cleaved the 3'-strand of the H probe and the S probe upon attachment of the target miRNA, resulting in the release of the miRNA and the autonomous production of a \"g\" sequence. The released target miRNA then hybridized with a second H probe and progressed to the subsequent reaction phase. With the help of the HP1 and HP2 probes, a lengthy dsDNA product was produced when the \"g\" sequence triggered HCR. The dsDNA product was not absorbed by GO, and the material instead fluoresced brightly. As a result, the amount of miRNA of interest was measured. With a LOD of only 5.6 fM, this bioassay demonstrated excellent selectivity and great sensitivity.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"3195-3202"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12033-023-00924-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/18 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate detection of circulating microRNAs (miRNAs) plays a vital role in the diagnosis of various diseases. The current miRNA detection methods, however, are widely criticized for their low sensitivity and excessive background signal. Herein, we propose a graphene oxide (GO) based fluorescent biosensor for sensitive and reliable miRNA analysis with a low background signal by utilizing exonuclease III (Exo III)-assisted target recycling and hybridization chain reaction (HCR). To initiate Exo-III-assisted dual signal cycles, a hairpin DNA probe (H probe) was developed for selective miRNA binding. Dye quenching occurred when carboxyfluorescein (FAM)-labeled hairpins (HP1 and HP1) were unable to bind to their intended target and instead adsorb onto the surface of GO via p-stacking interactions. Exo III sequentially cleaved the 3'-strand of the H probe and the S probe upon attachment of the target miRNA, resulting in the release of the miRNA and the autonomous production of a "g" sequence. The released target miRNA then hybridized with a second H probe and progressed to the subsequent reaction phase. With the help of the HP1 and HP2 probes, a lengthy dsDNA product was produced when the "g" sequence triggered HCR. The dsDNA product was not absorbed by GO, and the material instead fluoresced brightly. As a result, the amount of miRNA of interest was measured. With a LOD of only 5.6 fM, this bioassay demonstrated excellent selectivity and great sensitivity.
期刊介绍:
Molecular Biotechnology publishes original research papers on the application of molecular biology to both basic and applied research in the field of biotechnology. Particular areas of interest include the following: stability and expression of cloned gene products, cell transformation, gene cloning systems and the production of recombinant proteins, protein purification and analysis, transgenic species, developmental biology, mutation analysis, the applications of DNA fingerprinting, RNA interference, and PCR technology, microarray technology, proteomics, mass spectrometry, bioinformatics, plant molecular biology, microbial genetics, gene probes and the diagnosis of disease, pharmaceutical and health care products, therapeutic agents, vaccines, gene targeting, gene therapy, stem cell technology and tissue engineering, antisense technology, protein engineering and enzyme technology, monoclonal antibodies, glycobiology and glycomics, and agricultural biotechnology.