Solid lipid nanoparticles: a versatile approach for controlled release and targeted drug delivery.

IF 3.6 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Journal of Liposome Research Pub Date : 2024-06-01 Epub Date: 2023-10-15 DOI:10.1080/08982104.2023.2268711
Minahal Munir, Muhammad Zaman, Muhammad Ahsan Waqar, Mahtab Ahmad Khan, Muhammad Nadeem Alvi
{"title":"Solid lipid nanoparticles: a versatile approach for controlled release and targeted drug delivery.","authors":"Minahal Munir, Muhammad Zaman, Muhammad Ahsan Waqar, Mahtab Ahmad Khan, Muhammad Nadeem Alvi","doi":"10.1080/08982104.2023.2268711","DOIUrl":null,"url":null,"abstract":"<p><p>Solid Lipid Nanoparticles (SLN), the first type of lipid-based solid carrier systems in the nanometer range, were introduced as a replacement for liposomes. SLN are aqueous colloidal dispersions with solid biodegradable lipids as their matrix. SLN is produced using processes like solvent diffusion method and high-pressure homogenization, among others. Major benefits include regulated release, increased bioavailability, preservation of peptides and chemically labile compounds like retinol against degradation, cost-effective excipients, better drug integration, and a broad range of applications. Solid lipid nanoparticles can be administered via different routes, such as oral, parenteral, pulmonary, etc. SLN can be prepared by using high shear mixing as well as low shear mixing. The next generation of solid lipids, nanostructured lipid carriers (NLC), can reduce some of the drawbacks of SLN, such as its restricted capacity for drug loading and drug expulsion during storage. NLC are controlled nanostructured lipid particles that enhance drug loading. This review covers a brief introduction of solid lipid nanoparticles, manufacturing techniques, benefits, limitations, and their characterization tests.</p>","PeriodicalId":16286,"journal":{"name":"Journal of Liposome Research","volume":" ","pages":"335-348"},"PeriodicalIF":3.6000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Liposome Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08982104.2023.2268711","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Solid Lipid Nanoparticles (SLN), the first type of lipid-based solid carrier systems in the nanometer range, were introduced as a replacement for liposomes. SLN are aqueous colloidal dispersions with solid biodegradable lipids as their matrix. SLN is produced using processes like solvent diffusion method and high-pressure homogenization, among others. Major benefits include regulated release, increased bioavailability, preservation of peptides and chemically labile compounds like retinol against degradation, cost-effective excipients, better drug integration, and a broad range of applications. Solid lipid nanoparticles can be administered via different routes, such as oral, parenteral, pulmonary, etc. SLN can be prepared by using high shear mixing as well as low shear mixing. The next generation of solid lipids, nanostructured lipid carriers (NLC), can reduce some of the drawbacks of SLN, such as its restricted capacity for drug loading and drug expulsion during storage. NLC are controlled nanostructured lipid particles that enhance drug loading. This review covers a brief introduction of solid lipid nanoparticles, manufacturing techniques, benefits, limitations, and their characterization tests.

固体脂质纳米颗粒:一种用于控制释放和靶向药物递送的通用方法。
固体脂质纳米粒子(SLN)是纳米范围内第一种基于脂质的固体载体系统,被引入作为脂质体的替代品。SLN是以固体可生物降解脂质为基质的水性胶体分散体。SLN是使用溶剂扩散法和高压均化等工艺生产的。主要优点包括调节释放、提高生物利用度、保护肽和视黄醇等化学不稳定化合物免受降解、成本效益高的赋形剂、更好的药物整合以及广泛的应用。固体脂质纳米颗粒可以通过不同的途径给药,如口服、胃肠外、肺等。SLN可以通过使用高剪切混合和低剪切混合来制备。下一代固体脂质,纳米结构脂质载体(NLC),可以减少SLN的一些缺点,例如其在储存过程中装载药物和排出药物的能力有限。NLC是增强药物负载的受控纳米结构脂质颗粒。这篇综述简要介绍了固体脂质纳米颗粒、制造技术、优点、局限性及其表征测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Liposome Research
Journal of Liposome Research 生物-生化与分子生物学
CiteScore
10.50
自引率
2.30%
发文量
24
审稿时长
3 months
期刊介绍: The Journal of Liposome Research aims to publish original, high-quality, peer-reviewed research on the topic of liposomes and related systems, lipid-based delivery systems, lipid biology, and both synthetic and physical lipid chemistry. Reviews and commentaries or editorials are generally solicited and are editorially reviewed. The Journal also publishes abstracts and conference proceedings including those from the International Liposome Society. The scope of the Journal includes: Formulation and characterisation of systems Formulation engineering of systems Synthetic and physical lipid chemistry Lipid Biology Biomembranes Vaccines Emerging technologies and systems related to liposomes and vesicle type systems Developmental methodologies and new analytical techniques pertaining to the general area Pharmacokinetics, pharmacodynamics and biodistribution of systems Clinical applications. The Journal also publishes Special Issues focusing on particular topics and themes within the general scope of the Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信