Lu Liu, Hanshu Zhang, Yun Gao, He Zhu, Hanyan Yang, Ruilin Zhang, Yu Yang, Hongfei Gao
{"title":"Pyrene-acylhydrazone-based Turn-on Fluorescent Probe for Highly Sensitive Detection Cu<sup>2+</sup> and Application in Bioimaging.","authors":"Lu Liu, Hanshu Zhang, Yun Gao, He Zhu, Hanyan Yang, Ruilin Zhang, Yu Yang, Hongfei Gao","doi":"10.1007/s10895-023-03465-z","DOIUrl":null,"url":null,"abstract":"<p><p>The development of highly selective and sensitive, low detection limits, and biocompatible turn-on copper ion fluorescent probes is of great significance for the environment and life sciences. In this study, a novel turn-on fluorescent probe T based on pyrene-acylhydrazone was synthesized via an efficient one-step condensation reaction and characterized by <sup>1</sup>H NMR, <sup>13</sup>C NMR and HRMS. The probe T exhibited high selectivity with a low detection limit of 0.304 nM towards Cu<sup>2+</sup> in DMSO/H<sub>2</sub>O (v/v = 1 : 1) medium by a PET-TICT dual interplaying sensing mechanisms. Job's plot analysis and HRMS data confirmed the 1 : 1 binding stoichiometry between T and Cu<sup>2+</sup> with an association constant of 5.7×10<sup>3</sup> M<sup>-1</sup>. Additionally, the binding model was investigated by <sup>1</sup>H NMR titration and FT-IR spectra. Furthermore, probe T exhibits low cellular toxicity and excellent membrane permeability, and has been successfully applied for fluorescent imaging of copper ions in live HT-22 cells.</p>","PeriodicalId":15800,"journal":{"name":"Journal of Fluorescence","volume":" ","pages":"2593-2600"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10895-023-03465-z","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The development of highly selective and sensitive, low detection limits, and biocompatible turn-on copper ion fluorescent probes is of great significance for the environment and life sciences. In this study, a novel turn-on fluorescent probe T based on pyrene-acylhydrazone was synthesized via an efficient one-step condensation reaction and characterized by 1H NMR, 13C NMR and HRMS. The probe T exhibited high selectivity with a low detection limit of 0.304 nM towards Cu2+ in DMSO/H2O (v/v = 1 : 1) medium by a PET-TICT dual interplaying sensing mechanisms. Job's plot analysis and HRMS data confirmed the 1 : 1 binding stoichiometry between T and Cu2+ with an association constant of 5.7×103 M-1. Additionally, the binding model was investigated by 1H NMR titration and FT-IR spectra. Furthermore, probe T exhibits low cellular toxicity and excellent membrane permeability, and has been successfully applied for fluorescent imaging of copper ions in live HT-22 cells.
期刊介绍:
Journal of Fluorescence is an international forum for the publication of peer-reviewed original articles that advance the practice of this established spectroscopic technique. Topics covered include advances in theory/and or data analysis, studies of the photophysics of aromatic molecules, solvent, and environmental effects, development of stationary or time-resolved measurements, advances in fluorescence microscopy, imaging, photobleaching/recovery measurements, and/or phosphorescence for studies of cell biology, chemical biology and the advanced uses of fluorescence in flow cytometry/analysis, immunology, high throughput screening/drug discovery, DNA sequencing/arrays, genomics and proteomics. Typical applications might include studies of macromolecular dynamics and conformation, intracellular chemistry, and gene expression. The journal also publishes papers that describe the synthesis and characterization of new fluorophores, particularly those displaying unique sensitivities and/or optical properties. In addition to original articles, the Journal also publishes reviews, rapid communications, short communications, letters to the editor, topical news articles, and technical and design notes.