Hannah E Laue, Yuka Moroishi, Brian P Jackson, Thomas J Palys, Emily R Baker, Susan A Korrick, Juliette C Madan, Margaret R Karagas
{"title":"Bacterial Modification of the Association Between Arsenic and Autism-Related Social Behavior Scores.","authors":"Hannah E Laue, Yuka Moroishi, Brian P Jackson, Thomas J Palys, Emily R Baker, Susan A Korrick, Juliette C Madan, Margaret R Karagas","doi":"10.1007/s12403-022-00494-0","DOIUrl":null,"url":null,"abstract":"<p><p>Arsenic is related to neurodevelopmental outcomes and is associated with the composition of the gut microbiome. Data on the modifying role of the microbiome are limited. We probed suggestive relationships between arsenic and social behaviors to quantify the modifying role of the infant gut microbiome. We followed children for whom arsenic concentrations were quantified in 6-week-old toenail clippings. Scores on the Social Responsiveness Scale (SRS-2), which measures autism-related social behaviors, were provided by caregivers when the child was approximately 3 years of age. Metagenomic sequencing was performed on infant stools collected at 6 weeks and 1 year of age. To evaluate modification by the top ten most abundant species and functional pathways, we modeled SRS-2 total <i>T</i>-scores as a function of arsenic concentrations, microbiome features dichotomized at their median, and an interaction between exposure and the microbiome, adjusting for other trace elements and sociodemographic characteristics. As compared to the standardized population (SRS-2 <i>T</i>-scores = 50), participants in our study had lower SRS-2 scores (<i>n</i> = 78, mean = 44, SD = 5).The relative abundances of several functional pathways identified in 6-week stool samples modified the arsenic-SRS-2 association, including the pathways of valine and isoleucine biosynthesis; we observed no association among those with high relative abundance of each pathway [<i>β</i> = - 0.67 (95% CI - 1.46, 0.12)], and an adverse association [<i>β</i> = 1.67 (95% CI 0.3, 3.04), <i>p</i><sub>interaction</sub>= 0.05] among infants with low relative abundance. Our findings indicate the infant gut microbiome may alter neurodevelopmental susceptibility to environmental exposures.</p>","PeriodicalId":12116,"journal":{"name":"Exposure and Health","volume":"15 2","pages":"347-354"},"PeriodicalIF":4.5000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10569445/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Exposure and Health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s12403-022-00494-0","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/6/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
Abstract
Arsenic is related to neurodevelopmental outcomes and is associated with the composition of the gut microbiome. Data on the modifying role of the microbiome are limited. We probed suggestive relationships between arsenic and social behaviors to quantify the modifying role of the infant gut microbiome. We followed children for whom arsenic concentrations were quantified in 6-week-old toenail clippings. Scores on the Social Responsiveness Scale (SRS-2), which measures autism-related social behaviors, were provided by caregivers when the child was approximately 3 years of age. Metagenomic sequencing was performed on infant stools collected at 6 weeks and 1 year of age. To evaluate modification by the top ten most abundant species and functional pathways, we modeled SRS-2 total T-scores as a function of arsenic concentrations, microbiome features dichotomized at their median, and an interaction between exposure and the microbiome, adjusting for other trace elements and sociodemographic characteristics. As compared to the standardized population (SRS-2 T-scores = 50), participants in our study had lower SRS-2 scores (n = 78, mean = 44, SD = 5).The relative abundances of several functional pathways identified in 6-week stool samples modified the arsenic-SRS-2 association, including the pathways of valine and isoleucine biosynthesis; we observed no association among those with high relative abundance of each pathway [β = - 0.67 (95% CI - 1.46, 0.12)], and an adverse association [β = 1.67 (95% CI 0.3, 3.04), pinteraction= 0.05] among infants with low relative abundance. Our findings indicate the infant gut microbiome may alter neurodevelopmental susceptibility to environmental exposures.
期刊介绍:
It is a multidisciplinary journal focused on global human health consequences of exposure to water pollution in natural and engineered environments. The journal provides a unique platform for scientists in this field to exchange ideas and share information on research for the solution of health effects of exposure to water pollution.
Coverage encompasses Engineering sciences; Biogeochemical sciences; Health sciences; Exposure analysis and Epidemiology; Social sciences and public policy; Mathematical, numerical and statistical methods; Experimental, data collection and data analysis methods and more.
Research topics include local, regional and global water pollution, exposure and health problems; health risk analysis of water pollution, methods of quantification and analysis of risk under uncertainty; aquatic biogeochemical processes in natural and engineered systems and health effects; analysis of pollution, exposure and health data; and more.