The m6A reader IGF2BP1 manipulates BUB1B expression to affect malignant behaviors, stem cell properties, and immune resistance of non-small-cell lung cancer stem cells.
IF 2 4区 生物学Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
{"title":"The m6A reader IGF2BP1 manipulates BUB1B expression to affect malignant behaviors, stem cell properties, and immune resistance of non-small-cell lung cancer stem cells.","authors":"Shuo Hu, Xi Yan, Wen Bian, Bin Ni","doi":"10.1007/s10616-023-00594-y","DOIUrl":null,"url":null,"abstract":"<p><p>N6-methyladenosine (m6A) modification is the most common internal modification in eukaryotic mRNA and an important mechanism for post-transcriptional regulation of genes. This study focuses on the role of the m6A reader insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1) in the malignant behaviors of non-small-cell lung cancer (NSCLC) cells and especially the cancer stem cells (CSCs). We obtained IGF2BP1 as an aberrantly upregulated gene linking to poor survival of patients with NSCLC by bioinformatics, and then confirmed increased IGF2BP1 expression in NSCLC tissues and cells, especially in the enriched CSCs. Knockdown of IGF2BP1 suppressed proliferation, mobility and epithelial-mesenchymal transition activity of NSCLC cells and CSCs, and it reduced stemness, self-renewal ability, xenograft tumorigenesis and immune resistance of the CSCs. IGF2BP1 was predicted to have a positive correlation with BUB1 mitotic checkpoint serine/threonine kinase B (BUB1B), and it upregulated BUB1B expression through m6A modification. Further overexpression of BUB1B in CSCs counteracted the effects of IGF2BP1 silencing and restored the malignant phenotype, self-renewal, and immune resistance of CSCs in vitro and in vivo. Taken together, this work demonstrates that IGF2BP1 manipulates BUB1B expression to affect malignant behaviors, stem cell properties and immune resistance of NSCLC stem cells.</p>","PeriodicalId":10890,"journal":{"name":"Cytotechnology","volume":"75 6","pages":"517-532"},"PeriodicalIF":2.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575838/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytotechnology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10616-023-00594-y","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
N6-methyladenosine (m6A) modification is the most common internal modification in eukaryotic mRNA and an important mechanism for post-transcriptional regulation of genes. This study focuses on the role of the m6A reader insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1) in the malignant behaviors of non-small-cell lung cancer (NSCLC) cells and especially the cancer stem cells (CSCs). We obtained IGF2BP1 as an aberrantly upregulated gene linking to poor survival of patients with NSCLC by bioinformatics, and then confirmed increased IGF2BP1 expression in NSCLC tissues and cells, especially in the enriched CSCs. Knockdown of IGF2BP1 suppressed proliferation, mobility and epithelial-mesenchymal transition activity of NSCLC cells and CSCs, and it reduced stemness, self-renewal ability, xenograft tumorigenesis and immune resistance of the CSCs. IGF2BP1 was predicted to have a positive correlation with BUB1 mitotic checkpoint serine/threonine kinase B (BUB1B), and it upregulated BUB1B expression through m6A modification. Further overexpression of BUB1B in CSCs counteracted the effects of IGF2BP1 silencing and restored the malignant phenotype, self-renewal, and immune resistance of CSCs in vitro and in vivo. Taken together, this work demonstrates that IGF2BP1 manipulates BUB1B expression to affect malignant behaviors, stem cell properties and immune resistance of NSCLC stem cells.
期刊介绍:
The scope of the Journal includes:
1. The derivation, genetic modification and characterization of cell lines, genetic and phenotypic regulation, control of cellular metabolism, cell physiology and biochemistry related to cell function, performance and expression of cell products.
2. Cell culture techniques, substrates, environmental requirements and optimization, cloning, hybridization and molecular biology, including genomic and proteomic tools.
3. Cell culture systems, processes, reactors, scale-up, and industrial production. Descriptions of the design or construction of equipment, media or quality control procedures, that are ancillary to cellular research.
4. The application of animal/human cells in research in the field of stem cell research including maintenance of stemness, differentiation, genetics, and senescence, cancer research, research in immunology, as well as applications in tissue engineering and gene therapy.
5. The use of cell cultures as a substrate for bioassays, biomedical applications and in particular as a replacement for animal models.