Elucidation of genetic variation and population structure of melon genetic resources in the NARO Genebank, and construction of the World Melon Core Collection.
{"title":"Elucidation of genetic variation and population structure of melon genetic resources in the NARO Genebank, and construction of the World Melon Core Collection.","authors":"Gentaro Shigita, Tran Phuong Dung, Mst Naznin Pervin, Thanh-Thuy Duong, Odirich Nnennaya Imoh, Yuki Monden, Hidetaka Nishida, Katsunori Tanaka, Mitsuhiro Sugiyama, Yoichi Kawazu, Norihiko Tomooka, Kenji Kato","doi":"10.1270/jsbbs.22071","DOIUrl":null,"url":null,"abstract":"<p><p>Numerous genetic resources of major crops have been introduced from around the world and deposited in Japanese National Agriculture and Food Research Organization (NARO) Genebank. Understanding their genetic variation and selecting a representative subset (\"core collection\") are essential for optimal management and efficient use of genetic resources. In this study, we conducted genotyping-by-sequencing (GBS) to characterize the genetic relationships and population structure in 755 accessions of melon genetic resources. The GBS identified 39,324 single-nucleotide polymorphisms (SNPs) that are distributed throughout the melon genome with high density (one SNP/10.6 kb). The phylogenetic relationships and population structure inferred using this SNP dataset are highly associated with the cytoplasm type and geographical origin. Our results strongly support the recent hypothesis that cultivated melon was established in Africa and India through multiple independent domestication events. Finally, we constructed a World Melon Core Collection that covers at least 82% of the genetic diversity and has a wide range of geographical origins and fruit morphology. The genome-wide SNP dataset, phylogenetic relationships, population structure, and the core collection provided in this study should largely contribute to genetic research, breeding, and genetic resource preservation in melon.</p>","PeriodicalId":9258,"journal":{"name":"Breeding Science","volume":"73 3","pages":"269-277"},"PeriodicalIF":2.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10570884/pdf/73_269.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Breeding Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1270/jsbbs.22071","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Numerous genetic resources of major crops have been introduced from around the world and deposited in Japanese National Agriculture and Food Research Organization (NARO) Genebank. Understanding their genetic variation and selecting a representative subset ("core collection") are essential for optimal management and efficient use of genetic resources. In this study, we conducted genotyping-by-sequencing (GBS) to characterize the genetic relationships and population structure in 755 accessions of melon genetic resources. The GBS identified 39,324 single-nucleotide polymorphisms (SNPs) that are distributed throughout the melon genome with high density (one SNP/10.6 kb). The phylogenetic relationships and population structure inferred using this SNP dataset are highly associated with the cytoplasm type and geographical origin. Our results strongly support the recent hypothesis that cultivated melon was established in Africa and India through multiple independent domestication events. Finally, we constructed a World Melon Core Collection that covers at least 82% of the genetic diversity and has a wide range of geographical origins and fruit morphology. The genome-wide SNP dataset, phylogenetic relationships, population structure, and the core collection provided in this study should largely contribute to genetic research, breeding, and genetic resource preservation in melon.
期刊介绍:
Breeding Science is published by the Japanese Society of Breeding. Breeding Science publishes research papers, notes and reviews
related to breeding. Research Papers are standard original articles.
Notes report new cultivars, breeding lines, germplasms, genetic
stocks, mapping populations, database, software, and techniques
significant and useful for breeding. Reviews summarize recent and
historical events related breeding.
Manuscripts should be submitted by corresponding author. Corresponding author must have obtained permission from all authors
prior to submission. Correspondence, proofs, and charges of excess page and color figures should be handled by the corresponding author.