Stephen M Ratchford, Ryan M Broxterman, D Taylor La Salle, Oh Sung Kwon, Paul N Hopkins, Russell S Richardson, Joel D Trinity
{"title":"Obesity does not alter vascular function and handgrip exercise hemodynamics in middle-aged patients with hypertension.","authors":"Stephen M Ratchford, Ryan M Broxterman, D Taylor La Salle, Oh Sung Kwon, Paul N Hopkins, Russell S Richardson, Joel D Trinity","doi":"10.1152/ajpregu.00105.2023","DOIUrl":null,"url":null,"abstract":"<p><p>Lifestyle modification including exercise training is often the first line of defense in the treatment of obesity and hypertension (HTN), however, little is known regarding how these potentially compounding disease states impact vasodilatory and hemodynamic responses at baseline and exercise. Therefore, this study sought to compare the impact of obesity on vascular function and hemodynamics at baseline and during handgrip (HG) exercise among individuals with HTN. Non-obese (13M/7F, 56 ± 16 yr, 25 ± 4 kg/m<sup>2</sup>) and obese (17M/4F, 50 ± 7 yr, 35 ± 4 kg/m<sup>2</sup>) middle-aged individuals with HTN forwent antihypertensive medication use for ≥2 wk before assessment of vascular function by brachial artery flow-mediated dilation (FMD) and exercise hemodynamics during progressive HG exercise at 15-30-45% maximal voluntary contraction (MVC). FMD was not different between Non-Obese (4.1 ± 1.7%) and Obese (5.2 ± 1.9%, <i>P</i> = 0.11). Systolic blood pressure (SBP) was elevated by ∼15% during the supine baseline and during HG exercise in the obese group. The blood flow response to HG exercise at 30% and 45% MVC was ∼20% greater (<i>P</i> < 0.05) in the obese group but not different after normalizing for the higher, albeit, nonsignificant differences in workloads (MVC: obese: 24 ± 5 kg, non-obese: 21 ± 5 kg, <i>P</i> = 0.11). Vascular conductance and the brachial artery shear-induced vasodilatory response during HG were not different between groups (<i>P</i> > 0.05). Taken together, despite elevated SBP during HG exercise, obesity does not lead to additional impairments in vascular function and peripheral exercising hemodynamics in patients with HTN. Obesity may not be a contraindication when prescribing exercise for the treatment of HTN among middle-aged adults, however, the elevated SBP should be appropriately monitored.<b>NEW & NOTEWORTHY</b> This study examined vascular function and handgrip exercise hemodynamics in obese and nonobese individuals with hypertension. Obesity, when combined with hypertension, was neither associated with additional vascular function impairments at baseline nor peripheral hemodynamics and vasodilation during exercise compared with nonobese hypertension. Interestingly, systolic blood pressure and pulse pressure were greater in the obese group during supine baseline and exercise. These findings should not be ignored and may be particularly important for rehabilitation strategies.</p>","PeriodicalId":7630,"journal":{"name":"American journal of physiology. Regulatory, integrative and comparative physiology","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11283903/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Regulatory, integrative and comparative physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpregu.00105.2023","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/16 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Lifestyle modification including exercise training is often the first line of defense in the treatment of obesity and hypertension (HTN), however, little is known regarding how these potentially compounding disease states impact vasodilatory and hemodynamic responses at baseline and exercise. Therefore, this study sought to compare the impact of obesity on vascular function and hemodynamics at baseline and during handgrip (HG) exercise among individuals with HTN. Non-obese (13M/7F, 56 ± 16 yr, 25 ± 4 kg/m2) and obese (17M/4F, 50 ± 7 yr, 35 ± 4 kg/m2) middle-aged individuals with HTN forwent antihypertensive medication use for ≥2 wk before assessment of vascular function by brachial artery flow-mediated dilation (FMD) and exercise hemodynamics during progressive HG exercise at 15-30-45% maximal voluntary contraction (MVC). FMD was not different between Non-Obese (4.1 ± 1.7%) and Obese (5.2 ± 1.9%, P = 0.11). Systolic blood pressure (SBP) was elevated by ∼15% during the supine baseline and during HG exercise in the obese group. The blood flow response to HG exercise at 30% and 45% MVC was ∼20% greater (P < 0.05) in the obese group but not different after normalizing for the higher, albeit, nonsignificant differences in workloads (MVC: obese: 24 ± 5 kg, non-obese: 21 ± 5 kg, P = 0.11). Vascular conductance and the brachial artery shear-induced vasodilatory response during HG were not different between groups (P > 0.05). Taken together, despite elevated SBP during HG exercise, obesity does not lead to additional impairments in vascular function and peripheral exercising hemodynamics in patients with HTN. Obesity may not be a contraindication when prescribing exercise for the treatment of HTN among middle-aged adults, however, the elevated SBP should be appropriately monitored.NEW & NOTEWORTHY This study examined vascular function and handgrip exercise hemodynamics in obese and nonobese individuals with hypertension. Obesity, when combined with hypertension, was neither associated with additional vascular function impairments at baseline nor peripheral hemodynamics and vasodilation during exercise compared with nonobese hypertension. Interestingly, systolic blood pressure and pulse pressure were greater in the obese group during supine baseline and exercise. These findings should not be ignored and may be particularly important for rehabilitation strategies.
期刊介绍:
The American Journal of Physiology-Regulatory, Integrative and Comparative Physiology publishes original investigations that illuminate normal or abnormal regulation and integration of physiological mechanisms at all levels of biological organization, ranging from molecules to humans, including clinical investigations. Major areas of emphasis include regulation in genetically modified animals; model organisms; development and tissue plasticity; neurohumoral control of circulation and hypertension; local control of circulation; cardiac and renal integration; thirst and volume, electrolyte homeostasis; glucose homeostasis and energy balance; appetite and obesity; inflammation and cytokines; integrative physiology of pregnancy-parturition-lactation; and thermoregulation and adaptations to exercise and environmental stress.