Susanne Heinzel, HoChan Cheon, Gabrielle T Belz, Philip D Hodgkin
{"title":"Survival and division fate programs are preserved but retuned during the naïve to memory CD8+ T-cell transition","authors":"Susanne Heinzel, HoChan Cheon, Gabrielle T Belz, Philip D Hodgkin","doi":"10.1111/imcb.12699","DOIUrl":null,"url":null,"abstract":"<p>Memory T cells are generated from naïve precursors undergoing proliferation during the initial immune response. Both naïve and memory T cells are maintained in a resting, quiescent state and respond to activation with a controlled proliferative burst and differentiation into effector cells. This similarity in the maintenance and response dynamics points to the preservation of key cellular fate programs; however, whether memory T cells have acquired intrinsic changes in these programs that may contribute to the enhanced immune protection in a recall response is not fully understood. Here we used a quantitative model–based analysis of proliferation and survival kinetics of <i>in vitro</i>–stimulated murine naïve and memory CD8<sup>+</sup> T cells in response to homeostatic and activating signals to establish intrinsic similarities or differences within these cell types. We show that resting memory T cells display heightened sensitivity to homeostatic cytokines, responding to interleukin (IL)-2 in addition to IL-7 and IL-15. The proliferative response to αCD3 was equal in size and kinetics, demonstrating that memory T cells undergo the same controlled division burst and automated return to quiescence as naïve T cells. However, perhaps surprisingly, we observed reduced expansion of αCD3-stimulated memory T cells in response to activating signals αCD28 and IL-2 compared with naïve T cells. Overall, we demonstrate that although sensitivities to cytokine and costimulatory signals have shifted, fate programs regulating the scale of the division burst are conserved in memory T cells.</p>","PeriodicalId":179,"journal":{"name":"Immunology & Cell Biology","volume":"102 1","pages":"46-57"},"PeriodicalIF":3.2000,"publicationDate":"2023-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/imcb.12699","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunology & Cell Biology","FirstCategoryId":"2","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/imcb.12699","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Memory T cells are generated from naïve precursors undergoing proliferation during the initial immune response. Both naïve and memory T cells are maintained in a resting, quiescent state and respond to activation with a controlled proliferative burst and differentiation into effector cells. This similarity in the maintenance and response dynamics points to the preservation of key cellular fate programs; however, whether memory T cells have acquired intrinsic changes in these programs that may contribute to the enhanced immune protection in a recall response is not fully understood. Here we used a quantitative model–based analysis of proliferation and survival kinetics of in vitro–stimulated murine naïve and memory CD8+ T cells in response to homeostatic and activating signals to establish intrinsic similarities or differences within these cell types. We show that resting memory T cells display heightened sensitivity to homeostatic cytokines, responding to interleukin (IL)-2 in addition to IL-7 and IL-15. The proliferative response to αCD3 was equal in size and kinetics, demonstrating that memory T cells undergo the same controlled division burst and automated return to quiescence as naïve T cells. However, perhaps surprisingly, we observed reduced expansion of αCD3-stimulated memory T cells in response to activating signals αCD28 and IL-2 compared with naïve T cells. Overall, we demonstrate that although sensitivities to cytokine and costimulatory signals have shifted, fate programs regulating the scale of the division burst are conserved in memory T cells.
期刊介绍:
The Australasian Society for Immunology Incorporated (ASI) was created by the amalgamation in 1991 of the Australian Society for Immunology, formed in 1970, and the New Zealand Society for Immunology, formed in 1975. The aim of the Society is to encourage and support the discipline of immunology in the Australasian region. It is a broadly based Society, embracing clinical and experimental, cellular and molecular immunology in humans and animals. The Society provides a network for the exchange of information and for collaboration within Australia, New Zealand and overseas. ASI members have been prominent in advancing biological and medical research worldwide. We seek to encourage the study of immunology in Australia and New Zealand and are active in introducing young scientists to the discipline.