Nurul Hayati Yusof, Manroshan Singh, Fatimah Rubaizah Mohd Rasdi, Kim Song Tan
{"title":"Properties of concentrated skim rubber latex using membrane separation process and its comparison with other natural rubber latexes","authors":"Nurul Hayati Yusof, Manroshan Singh, Fatimah Rubaizah Mohd Rasdi, Kim Song Tan","doi":"10.1007/s42464-022-00189-w","DOIUrl":null,"url":null,"abstract":"<div><p>Concentrated skim (CSk) latex was prepared from raw skim (RSk) latex of <i>Hevea brasilliensis </i>via membrane separation process. Since the properties of CSk latex have not been reported previously, this work aims to study the properties of CSk latex and juxtapose it with raw skim (RSk), field (FNR) and high ammonia (HANR) latexes. The physicochemical properties of the latexes, such as total solid content (TSC), zeta potential, and pH, were analogous to FNR latex. CSK and RSk latexes were composed of small rubber particles as confirmed by SEM, with low molecular weight polymer as determined by gel permeation chromatography (GPC). The Fourier infra-red transform (FTIR) spectroscopy confirmed that CSk film contained high fatty acid ester, nitrogen and gel contents. After the ultra-filtration (UF) membrane separation, TSC increased from 7.3 wt% to 39.6 wt%. The non-rubber components and metal ion content were markedly decreased by 50%, respectively. About 85% of fatty acid esters were removed by acetone extraction (AE) while nitrogen and gel content remained the same in CSk film. This could be attributed to proteins forming cross-links that lead to high gel content of skim latex. In addition, CSk film showed marked improvement in thermal stability as compared to that of RSk.</p></div>","PeriodicalId":662,"journal":{"name":"Journal of Rubber Research","volume":"26 3","pages":"169 - 177"},"PeriodicalIF":1.2000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rubber Research","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s42464-022-00189-w","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Concentrated skim (CSk) latex was prepared from raw skim (RSk) latex of Hevea brasilliensis via membrane separation process. Since the properties of CSk latex have not been reported previously, this work aims to study the properties of CSk latex and juxtapose it with raw skim (RSk), field (FNR) and high ammonia (HANR) latexes. The physicochemical properties of the latexes, such as total solid content (TSC), zeta potential, and pH, were analogous to FNR latex. CSK and RSk latexes were composed of small rubber particles as confirmed by SEM, with low molecular weight polymer as determined by gel permeation chromatography (GPC). The Fourier infra-red transform (FTIR) spectroscopy confirmed that CSk film contained high fatty acid ester, nitrogen and gel contents. After the ultra-filtration (UF) membrane separation, TSC increased from 7.3 wt% to 39.6 wt%. The non-rubber components and metal ion content were markedly decreased by 50%, respectively. About 85% of fatty acid esters were removed by acetone extraction (AE) while nitrogen and gel content remained the same in CSk film. This could be attributed to proteins forming cross-links that lead to high gel content of skim latex. In addition, CSk film showed marked improvement in thermal stability as compared to that of RSk.
期刊介绍:
The Journal of Rubber Research is devoted to both natural and synthetic rubbers, as well as to related disciplines. The scope of the journal encompasses all aspects of rubber from the core disciplines of biology, physics and chemistry, as well as economics. As a specialised field, rubber science includes within its niche a vast potential of innovative and value-added research areas yet to be explored. This peer reviewed publication focuses on the results of active experimental research and authoritative reviews on all aspects of rubber science.
The Journal of Rubber Research welcomes research on:
the upstream, including crop management, crop improvement and protection, and biotechnology;
the midstream, including processing and effluent management;
the downstream, including rubber engineering and product design, advanced rubber technology, latex science and technology, and chemistry and materials exploratory;
economics, including the economics of rubber production, consumption, and market analysis.
The Journal of Rubber Research serves to build a collective knowledge base while communicating information and validating the quality of research within the discipline, and bringing together work from experts in rubber science and related disciplines.
Scientists in both academia and industry involved in researching and working with all aspects of rubber will find this journal to be both source of information and a gateway for their own publications.