Adel M’foukh, Jérôme Saint-Martin, Philippe Dollfus, Marco Pala
{"title":"Ab-initio simulation of dissipative transport in tunnel devices based on heterostructures of 2D materials","authors":"Adel M’foukh, Jérôme Saint-Martin, Philippe Dollfus, Marco Pala","doi":"10.1007/s10825-023-02080-2","DOIUrl":null,"url":null,"abstract":"<div><p>We present a first-principles model to study tunnel transistors based on van der Waals heterojunctions of 2D materials in the presence of dissipative mechanisms due to the electron–phonon interaction. To this purpose, we employed a reduced basis set composed of unit-cell restricted Bloch functions computed with a plane wave <i>ab-initio</i> solver and performed self-consistent quantum transport simulations within the non-equilibrium Green’s functions formalism. Phonon scattering was included with specific self-energies making use of the deformation potential approximation for the electron–phonon coupling. Our simulations identify the van der Waals tunnel FET as a promising option to attain high on-state currents at low supply voltages, but also show a strong impact of the phonon scattering on the transport properties of such device in the sub-threshold regime.\n</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"22 5","pages":"1257 - 1263"},"PeriodicalIF":2.2000,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10825-023-02080-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10825-023-02080-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
We present a first-principles model to study tunnel transistors based on van der Waals heterojunctions of 2D materials in the presence of dissipative mechanisms due to the electron–phonon interaction. To this purpose, we employed a reduced basis set composed of unit-cell restricted Bloch functions computed with a plane wave ab-initio solver and performed self-consistent quantum transport simulations within the non-equilibrium Green’s functions formalism. Phonon scattering was included with specific self-energies making use of the deformation potential approximation for the electron–phonon coupling. Our simulations identify the van der Waals tunnel FET as a promising option to attain high on-state currents at low supply voltages, but also show a strong impact of the phonon scattering on the transport properties of such device in the sub-threshold regime.
期刊介绍:
he Journal of Computational Electronics brings together research on all aspects of modeling and simulation of modern electronics. This includes optical, electronic, mechanical, and quantum mechanical aspects, as well as research on the underlying mathematical algorithms and computational details. The related areas of energy conversion/storage and of molecular and biological systems, in which the thrust is on the charge transport, electronic, mechanical, and optical properties, are also covered.
In particular, we encourage manuscripts dealing with device simulation; with optical and optoelectronic systems and photonics; with energy storage (e.g. batteries, fuel cells) and harvesting (e.g. photovoltaic), with simulation of circuits, VLSI layout, logic and architecture (based on, for example, CMOS devices, quantum-cellular automata, QBITs, or single-electron transistors); with electromagnetic simulations (such as microwave electronics and components); or with molecular and biological systems. However, in all these cases, the submitted manuscripts should explicitly address the electronic properties of the relevant systems, materials, or devices and/or present novel contributions to the physical models, computational strategies, or numerical algorithms.