{"title":"Metal-organic framework derived NiFe2O4/FeNi3@C composite for efficient electrocatalytic oxygen evolution reaction","authors":"Fangna Dai, Zhifei Wang, Huakai Xu, Chuanhai Jiang, Yuguo Ouyang, Chunyu Lu, Yuan Jing, Shiwei Yao, Xiaofei Wei","doi":"10.1007/s12613-023-2721-7","DOIUrl":null,"url":null,"abstract":"<div><p>Reducing the cost and improving the electrocatalytic activity are the key to developing high efficiency electrocatalysts for oxygen evolution reaction (OER). Here, bimetallic NiFe-based metal-organic framework (MOF) was prepared by solvothermal method, and then used as precursor to prepare NiFe-based MOF-derived materials by pyrolysis. The effects of different metal ratios and pyrolysis temperatures on the sample structure and OER electrocatalytic performance were investigated and compared. The experimental results showed that when the metal molar ratio was Fe: Ni = 1:5 and the pyrolysis temperature was 450°C, the sample (FeNi<sub>5</sub>-MOF-450) exhibits a composite structure of NiFe<sub>2</sub>O<sub>4</sub>/FeNi<sub>3</sub>/C and owns the superior electrocatalytic activity in OER. When the current density is 100 mA·cm<sup>−2</sup>, the overpotential of the sample was 377 mV with Tafel slope of 56.2 mV·dec<sup>−1</sup>, which indicates that FeNi<sub>5</sub>-MOF-450 exhibits superior electrocatalytic performance than the commercial RuO<sub>2</sub>. Moreover, the long-term stability of FeNi<sub>5</sub>-MOF-450 further promotes its development in OER. This work demonstrated that the regulatory methods such as component optimization can effectively improve the OER catalytic performance of NiFe-based MOF-derived materials.</p></div>","PeriodicalId":14030,"journal":{"name":"International Journal of Minerals, Metallurgy, and Materials","volume":"30 10","pages":"1914 - 1921"},"PeriodicalIF":5.6000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Minerals, Metallurgy, and Materials","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12613-023-2721-7","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Reducing the cost and improving the electrocatalytic activity are the key to developing high efficiency electrocatalysts for oxygen evolution reaction (OER). Here, bimetallic NiFe-based metal-organic framework (MOF) was prepared by solvothermal method, and then used as precursor to prepare NiFe-based MOF-derived materials by pyrolysis. The effects of different metal ratios and pyrolysis temperatures on the sample structure and OER electrocatalytic performance were investigated and compared. The experimental results showed that when the metal molar ratio was Fe: Ni = 1:5 and the pyrolysis temperature was 450°C, the sample (FeNi5-MOF-450) exhibits a composite structure of NiFe2O4/FeNi3/C and owns the superior electrocatalytic activity in OER. When the current density is 100 mA·cm−2, the overpotential of the sample was 377 mV with Tafel slope of 56.2 mV·dec−1, which indicates that FeNi5-MOF-450 exhibits superior electrocatalytic performance than the commercial RuO2. Moreover, the long-term stability of FeNi5-MOF-450 further promotes its development in OER. This work demonstrated that the regulatory methods such as component optimization can effectively improve the OER catalytic performance of NiFe-based MOF-derived materials.
期刊介绍:
International Journal of Minerals, Metallurgy and Materials (Formerly known as Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material) provides an international medium for the publication of theoretical and experimental studies related to the fields of Minerals, Metallurgy and Materials. Papers dealing with minerals processing, mining, mine safety, environmental pollution and protection of mines, process metallurgy, metallurgical physical chemistry, structure and physical properties of materials, corrosion and resistance of materials, are viewed as suitable for publication.