{"title":"Epitaxial Growth of Hollow Gold Nanotetrakaidecahedrons on Hollow Gold Nanocubes: A Method for Modifying the Morphology of Hollow Nanoparticles","authors":"Chunjie Ding, Xiaoyu Zhang, Mingxia Liu, Lisheng Zhang, Shuo Yang, Yan Fang","doi":"10.1007/s11468-023-01870-5","DOIUrl":null,"url":null,"abstract":"<div><p>The morphology of hollow noble metal nanoparticles is one of the most critical factors that determine their unique properties and applications. However, hollow nanoparticles typically take on the shape of the template, of which few types exist. In this study, a galvanic replacement reaction was used to synthesize hollow gold nanocubes on solid silver nanocubes, which served as the template. Conventionally, galvanic replacement reactions were only suitable to synthesize hollow gold nanoparticles with the same shape as the silver template particles. Here, ascorbic acid was introduced as a weak reducing agent to reduce the gold ions to gold atoms and cetyltrimethylammonium bromide (CTAB) as a surfactant to fabricate hollow gold nanotetrakaidecahedrons by epitaxially depositing gold atoms on the hollow gold nanocubes. The surfactant CTAB is selectively and preferentially adsorbed on the {110} and {100} facets of the hollow nanocubes because of their higher free energies than the {111} facet, which inhibits the growth of the {110} and {100} facets. Consequently, the {111} facet grew the fastest and eventually occupied the largest area, whereas the area of the {100} facets was slightly smaller, and the {110} facets disappeared during the formation of the hollow gold nanotetrakaidecahedrons. The calculated optical absorption spectra provided further evidence for the mechanism of formation and growth of the hollow gold nanotetrakaidecahedrons. This indicates that by adjusting the experimental conditions, hollow nanoparticles with the desired shapes can be fabricated by subsequent oriented and epitaxial growth on the surfaces of hollow nanoparticles synthesized by the galvanic replacement reaction.</p></div>","PeriodicalId":736,"journal":{"name":"Plasmonics","volume":"18 5","pages":"1659 - 1665"},"PeriodicalIF":3.3000,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasmonics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11468-023-01870-5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The morphology of hollow noble metal nanoparticles is one of the most critical factors that determine their unique properties and applications. However, hollow nanoparticles typically take on the shape of the template, of which few types exist. In this study, a galvanic replacement reaction was used to synthesize hollow gold nanocubes on solid silver nanocubes, which served as the template. Conventionally, galvanic replacement reactions were only suitable to synthesize hollow gold nanoparticles with the same shape as the silver template particles. Here, ascorbic acid was introduced as a weak reducing agent to reduce the gold ions to gold atoms and cetyltrimethylammonium bromide (CTAB) as a surfactant to fabricate hollow gold nanotetrakaidecahedrons by epitaxially depositing gold atoms on the hollow gold nanocubes. The surfactant CTAB is selectively and preferentially adsorbed on the {110} and {100} facets of the hollow nanocubes because of their higher free energies than the {111} facet, which inhibits the growth of the {110} and {100} facets. Consequently, the {111} facet grew the fastest and eventually occupied the largest area, whereas the area of the {100} facets was slightly smaller, and the {110} facets disappeared during the formation of the hollow gold nanotetrakaidecahedrons. The calculated optical absorption spectra provided further evidence for the mechanism of formation and growth of the hollow gold nanotetrakaidecahedrons. This indicates that by adjusting the experimental conditions, hollow nanoparticles with the desired shapes can be fabricated by subsequent oriented and epitaxial growth on the surfaces of hollow nanoparticles synthesized by the galvanic replacement reaction.
期刊介绍:
Plasmonics is an international forum for the publication of peer-reviewed leading-edge original articles that both advance and report our knowledge base and practice of the interactions of free-metal electrons, Plasmons.
Topics covered include notable advances in the theory, Physics, and applications of surface plasmons in metals, to the rapidly emerging areas of nanotechnology, biophotonics, sensing, biochemistry and medicine. Topics, including the theory, synthesis and optical properties of noble metal nanostructures, patterned surfaces or materials, continuous or grated surfaces, devices, or wires for their multifarious applications are particularly welcome. Typical applications might include but are not limited to, surface enhanced spectroscopic properties, such as Raman scattering or fluorescence, as well developments in techniques such as surface plasmon resonance and near-field scanning optical microscopy.