On a method of treating polar-optical phonons in real space

IF 2.2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
D. K. Ferry
{"title":"On a method of treating polar-optical phonons in real space","authors":"D. K. Ferry","doi":"10.1007/s10825-023-02083-z","DOIUrl":null,"url":null,"abstract":"<div><p>Polar-optical phonon interactions with carriers in semiconductors are long range interactions due to their Coulombic nature. Generally, if one wants to treat these with non-equilibrium Green’s functions, this long-range interaction requires two- and three-particle Green’s functions to be evaluated by, e.g., the Bethe–Salpeter equation. On the other hand, optical phonon scattering is thought to be phase breaking, which, if true, would eliminate this concern over long-range interactions. In seeking to determine just to what extent phase breaking is important, one could treat the polar modes as a real space potential, as is done for impurities, and examine the Occurrence of any such correlations. This latter approach suffers from the condition that it is not really known how to handle the polar modes in real space—no one seems to have done it. Here, such an approach is described as one possible method.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"22 5","pages":"1495 - 1499"},"PeriodicalIF":2.2000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10825-023-02083-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10825-023-02083-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Polar-optical phonon interactions with carriers in semiconductors are long range interactions due to their Coulombic nature. Generally, if one wants to treat these with non-equilibrium Green’s functions, this long-range interaction requires two- and three-particle Green’s functions to be evaluated by, e.g., the Bethe–Salpeter equation. On the other hand, optical phonon scattering is thought to be phase breaking, which, if true, would eliminate this concern over long-range interactions. In seeking to determine just to what extent phase breaking is important, one could treat the polar modes as a real space potential, as is done for impurities, and examine the Occurrence of any such correlations. This latter approach suffers from the condition that it is not really known how to handle the polar modes in real space—no one seems to have done it. Here, such an approach is described as one possible method.

Abstract Image

关于实空间中极性光学声子的一种处理方法
半导体中极性光学声子与载流子的相互作用由于其库仑性质而属于长程相互作用。通常,如果想用非平衡格林函数来处理这些问题,这种长程相互作用需要通过例如Bethe–Salpeter方程来评估两粒子和三粒子格林函数。另一方面,光学声子散射被认为是相位断裂,如果这是真的,将消除对长程相互作用的担忧。在试图确定断相在多大程度上是重要的时,可以将极性模式视为真实的空间势,就像对杂质所做的那样,并检查任何此类相关性的发生。后一种方法的缺点是,它并不真正知道如何处理真实空间中的极模——似乎没有人这样做过。在这里,这种方法被描述为一种可能的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computational Electronics
Journal of Computational Electronics ENGINEERING, ELECTRICAL & ELECTRONIC-PHYSICS, APPLIED
CiteScore
4.50
自引率
4.80%
发文量
142
审稿时长
>12 weeks
期刊介绍: he Journal of Computational Electronics brings together research on all aspects of modeling and simulation of modern electronics. This includes optical, electronic, mechanical, and quantum mechanical aspects, as well as research on the underlying mathematical algorithms and computational details. The related areas of energy conversion/storage and of molecular and biological systems, in which the thrust is on the charge transport, electronic, mechanical, and optical properties, are also covered. In particular, we encourage manuscripts dealing with device simulation; with optical and optoelectronic systems and photonics; with energy storage (e.g. batteries, fuel cells) and harvesting (e.g. photovoltaic), with simulation of circuits, VLSI layout, logic and architecture (based on, for example, CMOS devices, quantum-cellular automata, QBITs, or single-electron transistors); with electromagnetic simulations (such as microwave electronics and components); or with molecular and biological systems. However, in all these cases, the submitted manuscripts should explicitly address the electronic properties of the relevant systems, materials, or devices and/or present novel contributions to the physical models, computational strategies, or numerical algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信