Xiaomeng Li, Pengcheng Jia, Fanwen Meng, Xingyu Zhang, Yang Tang, Bo Song, Chang Gao, Liang Qin, Feng Teng, Yanbing Hou
{"title":"Propylamine hydrobromide passivated tin-based perovskites to efficient solar cells","authors":"Xiaomeng Li, Pengcheng Jia, Fanwen Meng, Xingyu Zhang, Yang Tang, Bo Song, Chang Gao, Liang Qin, Feng Teng, Yanbing Hou","doi":"10.1007/s12613-023-2604-y","DOIUrl":null,"url":null,"abstract":"<div><p>The development of tin-based devices with low toxicity is critical for the commercial viability of perovskite solar cells. However, because tin halide is a stronger Lewis acid, its crystallization rate is extremely fast, resulting in the formation of numerous defects that affect the device performance of tin-based perovskite solar cells. Herein, propylamine hydrobromide (PABr) was added to the perovskite precursor solution as an additive to passivate defects and fabricate more uniform and dense perovskite films. Because propylamine cations are too large to enter the perovskite lattices, they only exist at the grain boundary to passivate surface defects and promote crystal growth in a preferred orientation. The PABr additive raises the average short-circuit current density from 19.45 to 25.47 mA·cm<sup>−2</sup> by reducing carrier recombination induced by defects. Furthermore, the device’s long-term illumination stability is improved after optimization, and the hysteresis effect is negligible. The addition of PABr results in a power conversion efficiency of 9.35%.</p></div>","PeriodicalId":14030,"journal":{"name":"International Journal of Minerals, Metallurgy, and Materials","volume":"30 10","pages":"1965 - 1972"},"PeriodicalIF":5.6000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Minerals, Metallurgy, and Materials","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12613-023-2604-y","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
The development of tin-based devices with low toxicity is critical for the commercial viability of perovskite solar cells. However, because tin halide is a stronger Lewis acid, its crystallization rate is extremely fast, resulting in the formation of numerous defects that affect the device performance of tin-based perovskite solar cells. Herein, propylamine hydrobromide (PABr) was added to the perovskite precursor solution as an additive to passivate defects and fabricate more uniform and dense perovskite films. Because propylamine cations are too large to enter the perovskite lattices, they only exist at the grain boundary to passivate surface defects and promote crystal growth in a preferred orientation. The PABr additive raises the average short-circuit current density from 19.45 to 25.47 mA·cm−2 by reducing carrier recombination induced by defects. Furthermore, the device’s long-term illumination stability is improved after optimization, and the hysteresis effect is negligible. The addition of PABr results in a power conversion efficiency of 9.35%.
期刊介绍:
International Journal of Minerals, Metallurgy and Materials (Formerly known as Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material) provides an international medium for the publication of theoretical and experimental studies related to the fields of Minerals, Metallurgy and Materials. Papers dealing with minerals processing, mining, mine safety, environmental pollution and protection of mines, process metallurgy, metallurgical physical chemistry, structure and physical properties of materials, corrosion and resistance of materials, are viewed as suitable for publication.