Host phylogeny and environment shape the diversity of salamander skin bacterial communities.

IF 4.9 Q1 MICROBIOLOGY
S Ramírez-Barahona, F M González-Serrano, E Martínez-Ugalde, A Soto-Pozos, G Parra-Olea, E A Rebollar
{"title":"Host phylogeny and environment shape the diversity of salamander skin bacterial communities.","authors":"S Ramírez-Barahona, F M González-Serrano, E Martínez-Ugalde, A Soto-Pozos, G Parra-Olea, E A Rebollar","doi":"10.1186/s42523-023-00271-7","DOIUrl":null,"url":null,"abstract":"<p><p>The composition and diversity of animal-associated microbial communities are shaped by multiple ecological and evolutionary processes acting at different spatial and temporal scales. Skin microbiomes are thought to be strongly influenced by the environment due to the direct interaction of the host's skin with the external media. As expected, the diversity of amphibian skin microbiomes is shaped by climate and host sampling habitats, whereas phylogenetic effects appear to be weak. However, the relative strength of phylogenetic and environmental effects on salamander skin microbiomes remains poorly understood. Here, we analysed sequence data from 1164 adult salamanders of 44 species to characterise and compare the diversity and composition of skin bacteria. We assessed the relative contribution of climate, host sampling habitat, and host phylogeny to the observed patterns of bacterial diversity. We found that bacterial alpha diversity was mainly associated with host sampling habitat and climate, but that bacterial beta diversity was more strongly associated with host taxonomy and phylogeny. This phylogenetic effect predominantly occurred at intermediate levels of host divergence (0-50 Mya). Our results support the importance of environmental factors shaping the diversity of salamander skin microbiota, but also support host phylogenetic history as a major factor shaping these bacterial communities.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10571319/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal microbiome","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42523-023-00271-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The composition and diversity of animal-associated microbial communities are shaped by multiple ecological and evolutionary processes acting at different spatial and temporal scales. Skin microbiomes are thought to be strongly influenced by the environment due to the direct interaction of the host's skin with the external media. As expected, the diversity of amphibian skin microbiomes is shaped by climate and host sampling habitats, whereas phylogenetic effects appear to be weak. However, the relative strength of phylogenetic and environmental effects on salamander skin microbiomes remains poorly understood. Here, we analysed sequence data from 1164 adult salamanders of 44 species to characterise and compare the diversity and composition of skin bacteria. We assessed the relative contribution of climate, host sampling habitat, and host phylogeny to the observed patterns of bacterial diversity. We found that bacterial alpha diversity was mainly associated with host sampling habitat and climate, but that bacterial beta diversity was more strongly associated with host taxonomy and phylogeny. This phylogenetic effect predominantly occurred at intermediate levels of host divergence (0-50 Mya). Our results support the importance of environmental factors shaping the diversity of salamander skin microbiota, but also support host phylogenetic history as a major factor shaping these bacterial communities.

Abstract Image

Abstract Image

Abstract Image

宿主系统发育和环境决定了蝾螈皮肤细菌群落的多样性。
动物相关微生物群落的组成和多样性是由多种生态和进化过程在不同的空间和时间尺度上形成的。由于宿主皮肤与外部介质的直接相互作用,皮肤微生物组被认为受到环境的强烈影响。正如预期的那样,两栖动物皮肤微生物组的多样性是由气候和宿主采样栖息地决定的,而系统发育效应似乎较弱。然而,对蝾螈皮肤微生物群的系统发育和环境影响的相对强度仍知之甚少。在这里,我们分析了44种1164只成年蝾螈的序列数据,以表征和比较皮肤细菌的多样性和组成。我们评估了气候、宿主采样栖息地和宿主系统发育对观察到的细菌多样性模式的相对贡献。我们发现细菌α多样性主要与宿主采样栖息地和气候有关,但细菌β多样性与宿主分类学和系统发育更密切相关。这种系统发育效应主要发生在宿主分化的中间水平(0-50 Mya)。我们的研究结果支持环境因素对蝾螈皮肤微生物群多样性的影响,但也支持宿主系统发育史是形成这些细菌群落的主要因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信