Emerging roles of plasmacytoid dendritic cell crosstalk in tumor immunity.

IF 5.6 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Leilei Yang, Songya Li, Liuhui Chen, Yi Zhang
{"title":"Emerging roles of plasmacytoid dendritic cell crosstalk in tumor immunity.","authors":"Leilei Yang,&nbsp;Songya Li,&nbsp;Liuhui Chen,&nbsp;Yi Zhang","doi":"10.20892/j.issn.2095-3941.2023.0241","DOIUrl":null,"url":null,"abstract":"<p><p>Plasmacytoid dendritic cells (pDCs) are a pioneer cell type that produces type I interferon (IFN-I) and promotes antiviral immune responses. However, they are tolerogenic and, when recruited to the tumor microenvironment (TME), play complex roles that have long been a research focus. The interactions between pDCs and other components of the TME, whether direct or indirect, can either promote or hinder tumor development; consequently, pDCs are an intriguing target for therapeutic intervention. This review provides a comprehensive overview of pDC crosstalk in the TME, including crosstalk with various cell types, biochemical factors, and microorganisms. An in-depth understanding of pDC crosstalk in TME should facilitate the development of novel pDC-based therapeutic methods.</p>","PeriodicalId":9611,"journal":{"name":"Cancer Biology & Medicine","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10618948/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Biology & Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.20892/j.issn.2095-3941.2023.0241","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Plasmacytoid dendritic cells (pDCs) are a pioneer cell type that produces type I interferon (IFN-I) and promotes antiviral immune responses. However, they are tolerogenic and, when recruited to the tumor microenvironment (TME), play complex roles that have long been a research focus. The interactions between pDCs and other components of the TME, whether direct or indirect, can either promote or hinder tumor development; consequently, pDCs are an intriguing target for therapeutic intervention. This review provides a comprehensive overview of pDC crosstalk in the TME, including crosstalk with various cell types, biochemical factors, and microorganisms. An in-depth understanding of pDC crosstalk in TME should facilitate the development of novel pDC-based therapeutic methods.

Abstract Image

Abstract Image

Abstract Image

浆细胞-树突状细胞串扰在肿瘤免疫中的新作用。
浆细胞样树突状细胞(pDC)是一种产生I型干扰素(IFN-I)并促进抗病毒免疫反应的先驱细胞类型。然而,它们是耐受性的,当被招募到肿瘤微环境(TME)中时,发挥着长期以来一直是研究焦点的复杂作用。pDCs和TME的其他成分之间的相互作用,无论是直接的还是间接的,都可以促进或阻碍肿瘤的发展;因此,pDCs是一个有趣的治疗干预靶点。这篇综述全面概述了TME中的pDC串扰,包括与各种细胞类型、生化因子和微生物的串扰。深入了解TME中的pDC串扰应该有助于开发新的基于pDC的治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cancer Biology & Medicine
Cancer Biology & Medicine Medicine-Oncology
CiteScore
9.80
自引率
3.60%
发文量
1143
审稿时长
12 weeks
期刊介绍: Cancer Biology & Medicine (ISSN 2095-3941) is a peer-reviewed open-access journal of Chinese Anti-cancer Association (CACA), which is the leading professional society of oncology in China. The journal quarterly provides innovative and significant information on biological basis of cancer, cancer microenvironment, translational cancer research, and all aspects of clinical cancer research. The journal also publishes significant perspectives on indigenous cancer types in China.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信