Yun Huang, Steven Dang, J Elizabeth Richey, Pallavi Chhabra, Danielle R Thomas, Michael W Asher, Nikki G Lobczowski, Elizabeth A McLaughlin, Judith M Harackiewicz, Vincent Aleven, Kenneth R Koedinger
{"title":"Using latent variable models to make gaming-the-system detection robust to context variations.","authors":"Yun Huang, Steven Dang, J Elizabeth Richey, Pallavi Chhabra, Danielle R Thomas, Michael W Asher, Nikki G Lobczowski, Elizabeth A McLaughlin, Judith M Harackiewicz, Vincent Aleven, Kenneth R Koedinger","doi":"10.1007/s11257-023-09362-1","DOIUrl":null,"url":null,"abstract":"<p><p>Gaming the system, a behavior in which learners exploit a system's properties to make progress while avoiding learning, has frequently been shown to be associated with lower learning. However, when we applied a previously validated gaming detector across conditions in experiments with an algebra tutor, the detected gaming was not associated with reduced learning, challenging its validity in our study context. Our exploratory data analysis suggested that varying contextual factors across and within conditions contributed to this lack of association. We present a new approach, latent variable-based gaming detection (LV-GD), that controls for contextual factors and more robustly estimates student-level latent gaming tendencies. In LV-GD, a student is estimated as having a high gaming tendency if the student is detected to game more than the expected level of the population given the context. LV-GD applies a statistical model on top of an existing action-level gaming detector developed based on a typical human labeling process, without additional labeling effort. Across three datasets, we find that LV-GD consistently outperformed the original detector in validity measured by association between gaming and learning as well as reliability. LV-GD also afforded high practical utility: it more accurately revealed intervention effects on gaming, revealed a correlation between gaming and perceived competence in math and helped understand productive detected gaming behaviors. Our approach is not only useful for others wanting a cost-effective way to adapt a gaming detector to their context but is also generally applicable in creating robust behavioral measures.</p>","PeriodicalId":49388,"journal":{"name":"User Modeling and User-Adapted Interaction","volume":"33 5","pages":"1211-1257"},"PeriodicalIF":3.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10564808/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"User Modeling and User-Adapted Interaction","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11257-023-09362-1","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0
Abstract
Gaming the system, a behavior in which learners exploit a system's properties to make progress while avoiding learning, has frequently been shown to be associated with lower learning. However, when we applied a previously validated gaming detector across conditions in experiments with an algebra tutor, the detected gaming was not associated with reduced learning, challenging its validity in our study context. Our exploratory data analysis suggested that varying contextual factors across and within conditions contributed to this lack of association. We present a new approach, latent variable-based gaming detection (LV-GD), that controls for contextual factors and more robustly estimates student-level latent gaming tendencies. In LV-GD, a student is estimated as having a high gaming tendency if the student is detected to game more than the expected level of the population given the context. LV-GD applies a statistical model on top of an existing action-level gaming detector developed based on a typical human labeling process, without additional labeling effort. Across three datasets, we find that LV-GD consistently outperformed the original detector in validity measured by association between gaming and learning as well as reliability. LV-GD also afforded high practical utility: it more accurately revealed intervention effects on gaming, revealed a correlation between gaming and perceived competence in math and helped understand productive detected gaming behaviors. Our approach is not only useful for others wanting a cost-effective way to adapt a gaming detector to their context but is also generally applicable in creating robust behavioral measures.
期刊介绍:
User Modeling and User-Adapted Interaction provides an interdisciplinary forum for the dissemination of novel and significant original research results about interactive computer systems that can adapt themselves to their users, and on the design, use, and evaluation of user models for adaptation. The journal publishes high-quality original papers from, e.g., the following areas: acquisition and formal representation of user models; conceptual models and user stereotypes for personalization; student modeling and adaptive learning; models of groups of users; user model driven personalised information discovery and retrieval; recommender systems; adaptive user interfaces and agents; adaptation for accessibility and inclusion; generic user modeling systems and tools; interoperability of user models; personalization in areas such as; affective computing; ubiquitous and mobile computing; language based interactions; multi-modal interactions; virtual and augmented reality; social media and the Web; human-robot interaction; behaviour change interventions; personalized applications in specific domains; privacy, accountability, and security of information for personalization; responsible adaptation: fairness, accountability, explainability, transparency and control; methods for the design and evaluation of user models and adaptive systems