Holly N Gregory, Owein Guillemot-Legris, Daisy Crouch, Gareth Williams, James B Phillips
{"title":"Electrospun aligned tacrolimus-loaded polycaprolactone biomaterials for peripheral nerve repair.","authors":"Holly N Gregory, Owein Guillemot-Legris, Daisy Crouch, Gareth Williams, James B Phillips","doi":"10.2217/rme-2023-0151","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Efficacious repair of peripheral nerve injury is an unmet clinical need. The implantation of biomaterials containing neurotrophic drugs at the injury site could promote nerve regeneration and improve outcomes for patients. <b>Materials & methods:</b> Random and aligned electrospun poly-ε-caprolactone scaffolds containing encapsulated tacrolimus were fabricated, and the gene expression profile of Schwann cells (SCs) cultured on the surface was elucidated. On aligned fibers, the morphology of SCs and primary rat neurons was investigated. <b>Results:</b> Both scaffold types exhibited sustained release of drug, and the gene expression of SCs was modulated by both nanofibrous topography and the presence of tacrolimus. Aligned fibers promoted the alignment of SCs and orientated outgrowth from neurons. <b>Conclusion:</b> Electrospun PCL scaffolds with tacrolimus hold promise for the repair of peripheral nerve injury.</p>","PeriodicalId":21043,"journal":{"name":"Regenerative medicine","volume":" ","pages":"171-187"},"PeriodicalIF":2.4000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2217/rme-2023-0151","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/11 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Efficacious repair of peripheral nerve injury is an unmet clinical need. The implantation of biomaterials containing neurotrophic drugs at the injury site could promote nerve regeneration and improve outcomes for patients. Materials & methods: Random and aligned electrospun poly-ε-caprolactone scaffolds containing encapsulated tacrolimus were fabricated, and the gene expression profile of Schwann cells (SCs) cultured on the surface was elucidated. On aligned fibers, the morphology of SCs and primary rat neurons was investigated. Results: Both scaffold types exhibited sustained release of drug, and the gene expression of SCs was modulated by both nanofibrous topography and the presence of tacrolimus. Aligned fibers promoted the alignment of SCs and orientated outgrowth from neurons. Conclusion: Electrospun PCL scaffolds with tacrolimus hold promise for the repair of peripheral nerve injury.
期刊介绍:
Regenerative medicine replaces or regenerates human cells, tissue or organs, to restore or establish normal function*. Since 2006, Regenerative Medicine has been at the forefront of publishing the very best papers and reviews covering the entire regenerative medicine sector. The journal focusses on the entire spectrum of approaches to regenerative medicine, including small molecule drugs, biologics, biomaterials and tissue engineering, and cell and gene therapies – it’s all about regeneration and not a specific platform technology. The journal’s scope encompasses all aspects of the sector ranging from discovery research, through to clinical development, through to commercialization. Regenerative Medicine uniquely supports this important area of biomedical science and healthcare by providing a peer-reviewed journal totally committed to publishing the very best regenerative medicine research, clinical translation and commercialization.
Regenerative Medicine provides a specialist forum to address the important challenges and advances in regenerative medicine, delivering this essential information in concise, clear and attractive article formats – vital to a rapidly growing, multidisciplinary and increasingly time-constrained community.
Despite substantial developments in our knowledge and understanding of regeneration, the field is still in its infancy. However, progress is accelerating. The next few decades will see the discovery and development of transformative therapies for patients, and in some cases, even cures. Regenerative Medicine will continue to provide a critical overview of these advances as they progress, undergo clinical trials, and eventually become mainstream medicine.