Alexa Friedman , Samantha Schildroth , Julia A. Bauer , Brent A. Coull , Donald R. Smith , Donatella Placidi , Giuseppa Cagna , Maxine H. Krengel , Yorghos Tripodis , Roberta F. White , Roberto G. Lucchini , Robert O. Wright , Megan Horton , Christine Austin , Manish Arora , Birgit Claus Henn
{"title":"Early-life manganese exposure during multiple developmental periods and adolescent verbal learning and memory","authors":"Alexa Friedman , Samantha Schildroth , Julia A. Bauer , Brent A. Coull , Donald R. Smith , Donatella Placidi , Giuseppa Cagna , Maxine H. Krengel , Yorghos Tripodis , Roberta F. White , Roberto G. Lucchini , Robert O. Wright , Megan Horton , Christine Austin , Manish Arora , Birgit Claus Henn","doi":"10.1016/j.ntt.2023.107307","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Manganese (Mn) is both an essential and toxic metal, and associations with neurodevelopment depend on exposure timing. Prospective data examining early life Mn with adolescent cognition are sparse.</p></div><div><h3>Methods</h3><p>We enrolled 140 Italian adolescents (10–14 years old) from the Public Health Impact of Metals Exposure study. Mn in deciduous teeth was measured using laser ablation-mass spectrometry to represent prenatal, postnatal and early childhood exposure. The California Verbal Learning Test for Children (CVLT-C) was administered to assess adolescent verbal learning and memory. Multivariable regression models estimated changes in CVLT-C scores and the odds of making an error per doubling in dentine Mn in each exposure period. Multiple informant models tested for differences in associations across exposure periods.</p></div><div><h3>Results</h3><p>A doubling in prenatal dentine Mn levels was associated with lower odds of making an intrusion error (OR = 0.23 [95% CI: 0.09, 0.61]). This beneficial association was not observed in other exposure periods. A doubling in childhood Mn was beneficially associated with short delay free recall: (ß = 0.47 [95% CI: −0.02, 0.97]), which was stronger in males (ß = 0.94 [95% CI: 0.05, 1.82]). Associations were null in the postnatal period.</p></div><div><h3>Conclusion</h3><p>Exposure timing is critical for understanding Mn-associated changes in cognitive function.</p></div>","PeriodicalId":19144,"journal":{"name":"Neurotoxicology and teratology","volume":"100 ","pages":"Article 107307"},"PeriodicalIF":2.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurotoxicology and teratology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0892036223001575","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Manganese (Mn) is both an essential and toxic metal, and associations with neurodevelopment depend on exposure timing. Prospective data examining early life Mn with adolescent cognition are sparse.
Methods
We enrolled 140 Italian adolescents (10–14 years old) from the Public Health Impact of Metals Exposure study. Mn in deciduous teeth was measured using laser ablation-mass spectrometry to represent prenatal, postnatal and early childhood exposure. The California Verbal Learning Test for Children (CVLT-C) was administered to assess adolescent verbal learning and memory. Multivariable regression models estimated changes in CVLT-C scores and the odds of making an error per doubling in dentine Mn in each exposure period. Multiple informant models tested for differences in associations across exposure periods.
Results
A doubling in prenatal dentine Mn levels was associated with lower odds of making an intrusion error (OR = 0.23 [95% CI: 0.09, 0.61]). This beneficial association was not observed in other exposure periods. A doubling in childhood Mn was beneficially associated with short delay free recall: (ß = 0.47 [95% CI: −0.02, 0.97]), which was stronger in males (ß = 0.94 [95% CI: 0.05, 1.82]). Associations were null in the postnatal period.
Conclusion
Exposure timing is critical for understanding Mn-associated changes in cognitive function.
期刊介绍:
Neurotoxicology and Teratology provides a forum for publishing new information regarding the effects of chemical and physical agents on the developing, adult or aging nervous system. In this context, the fields of neurotoxicology and teratology include studies of agent-induced alterations of nervous system function, with a focus on behavioral outcomes and their underlying physiological and neurochemical mechanisms. The Journal publishes original, peer-reviewed Research Reports of experimental, clinical, and epidemiological studies that address the neurotoxicity and/or functional teratology of pesticides, solvents, heavy metals, nanomaterials, organometals, industrial compounds, mixtures, drugs of abuse, pharmaceuticals, animal and plant toxins, atmospheric reaction products, and physical agents such as radiation and noise. These reports include traditional mammalian neurotoxicology experiments, human studies, studies using non-mammalian animal models, and mechanistic studies in vivo or in vitro. Special Issues, Reviews, Commentaries, Meeting Reports, and Symposium Papers provide timely updates on areas that have reached a critical point of synthesis, on aspects of a scientific field undergoing rapid change, or on areas that present special methodological or interpretive problems. Theoretical Articles address concepts and potential mechanisms underlying actions of agents of interest in the nervous system. The Journal also publishes Brief Communications that concisely describe a new method, technique, apparatus, or experimental result.