CuiYu You, JianFeng Xing, JinYao Sun, Di Zhang, Yan Yan, YaLin Dong
{"title":"Anti-Inflammatory and Anti-Oxidant Impacts of Lentinan Combined with Probiotics in Ulcerative Colitis.","authors":"CuiYu You, JianFeng Xing, JinYao Sun, Di Zhang, Yan Yan, YaLin Dong","doi":"10.1007/s12033-023-00878-w","DOIUrl":null,"url":null,"abstract":"<p><p>Multi-methods have been developed to control ulcerative colitis. This research targeted to probe that lentinan combined with probiotics suppresses inflammation and oxidative stress responses in a dextran sulfate sodium (DSS)-induced colitis model. A mouse model of colitis was induced through oral administration with 2.5% DSS and treated with lentinan and probiotics independently or in combination. Then, bodyweight and Disease Activity Index (DAI) of mice were determined. Histopathology of colon tissue was analyzed, and apoptosis, inflammation and oxidative stress in the colon tissue of mice were observed. An HT-29 cell model of colitis was established by DSS stimulation and cultured with lentinan and/or probiotics to examine cell proliferation and apoptosis. The data discovered that after DSS induction of colitis, mice developed weight loss, increased DAI score, and shortened the length of colon. Also, severe histopathology of the colon, and increased apoptosis, inflammation and oxidative stress were recognizable. Lentinan could alleviate DSS-induced colitis, and the highest dose was the most significant. Probiotics could also relieve UC in mice, and mixed probiotics had a better therapeutic effect than single probiotics. Lentinan combined with probiotics could further alleviate DSS-induced colitis damage. In addition, lentinan combined with probiotics impaired apoptosis and enhanced proliferation of DSS-treated HT-29 cells. In a word, lentinan combined with probiotics reduces the inflammatory response and oxidative stress of UC.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"2778-2791"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12033-023-00878-w","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Multi-methods have been developed to control ulcerative colitis. This research targeted to probe that lentinan combined with probiotics suppresses inflammation and oxidative stress responses in a dextran sulfate sodium (DSS)-induced colitis model. A mouse model of colitis was induced through oral administration with 2.5% DSS and treated with lentinan and probiotics independently or in combination. Then, bodyweight and Disease Activity Index (DAI) of mice were determined. Histopathology of colon tissue was analyzed, and apoptosis, inflammation and oxidative stress in the colon tissue of mice were observed. An HT-29 cell model of colitis was established by DSS stimulation and cultured with lentinan and/or probiotics to examine cell proliferation and apoptosis. The data discovered that after DSS induction of colitis, mice developed weight loss, increased DAI score, and shortened the length of colon. Also, severe histopathology of the colon, and increased apoptosis, inflammation and oxidative stress were recognizable. Lentinan could alleviate DSS-induced colitis, and the highest dose was the most significant. Probiotics could also relieve UC in mice, and mixed probiotics had a better therapeutic effect than single probiotics. Lentinan combined with probiotics could further alleviate DSS-induced colitis damage. In addition, lentinan combined with probiotics impaired apoptosis and enhanced proliferation of DSS-treated HT-29 cells. In a word, lentinan combined with probiotics reduces the inflammatory response and oxidative stress of UC.
期刊介绍:
Molecular Biotechnology publishes original research papers on the application of molecular biology to both basic and applied research in the field of biotechnology. Particular areas of interest include the following: stability and expression of cloned gene products, cell transformation, gene cloning systems and the production of recombinant proteins, protein purification and analysis, transgenic species, developmental biology, mutation analysis, the applications of DNA fingerprinting, RNA interference, and PCR technology, microarray technology, proteomics, mass spectrometry, bioinformatics, plant molecular biology, microbial genetics, gene probes and the diagnosis of disease, pharmaceutical and health care products, therapeutic agents, vaccines, gene targeting, gene therapy, stem cell technology and tissue engineering, antisense technology, protein engineering and enzyme technology, monoclonal antibodies, glycobiology and glycomics, and agricultural biotechnology.