T K Krishnapriya, Ayswaria Deepti, P S Baby Chakrapani, A S Asha, M K Jayaraj
{"title":"Biocompatible, Europium-Doped Fluorapatite Nanoparticles as a Wide-Range pH Sensor.","authors":"T K Krishnapriya, Ayswaria Deepti, P S Baby Chakrapani, A S Asha, M K Jayaraj","doi":"10.1007/s10895-023-03461-3","DOIUrl":null,"url":null,"abstract":"<p><p>The development of a simple, biocompatible, pH sensor with a wide range of detection, using a single fluorescent probe is highly important in the medical field for the early detection of diseases related to the pH change of tissues and body fluids. For this purpose, europium-doped fluorapatite (FAP: Eu) nanoparticles were synthesized using the coprecipitation method. Doping with the rare earth element europium (Eu) makes the non-luminescent phosphate mineral fluorapatite, luminescent. The luminous response of the sample upon dissolution in hydrochloric acid (HCl), in highly acidic to weakly basic media, makes it a potential pH sensor. A linear variation was observed with an increase in pH, in both the total intensity of emission and the R-value or the asymmetry ratio. The ratiometric pH sensing enabled by the variation in R-value makes the sensor independent of external factors. The structural, optical, and photoluminescent (PL) lifetime analysis suggests a particle size-dependent pH sensing mechanism with the changes in the coordinated water molecules around the Eu<sup>3+</sup> ion in the nanoparticle. Given its exceptional biocompatibility and pH-dependent fluorescence intensity for a wide range of pH from 0.83 to 8.97, the probe can be used as a potential candidate for pH sensing of biological fluid.</p>","PeriodicalId":15800,"journal":{"name":"Journal of Fluorescence","volume":" ","pages":"2543-2555"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10895-023-03461-3","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The development of a simple, biocompatible, pH sensor with a wide range of detection, using a single fluorescent probe is highly important in the medical field for the early detection of diseases related to the pH change of tissues and body fluids. For this purpose, europium-doped fluorapatite (FAP: Eu) nanoparticles were synthesized using the coprecipitation method. Doping with the rare earth element europium (Eu) makes the non-luminescent phosphate mineral fluorapatite, luminescent. The luminous response of the sample upon dissolution in hydrochloric acid (HCl), in highly acidic to weakly basic media, makes it a potential pH sensor. A linear variation was observed with an increase in pH, in both the total intensity of emission and the R-value or the asymmetry ratio. The ratiometric pH sensing enabled by the variation in R-value makes the sensor independent of external factors. The structural, optical, and photoluminescent (PL) lifetime analysis suggests a particle size-dependent pH sensing mechanism with the changes in the coordinated water molecules around the Eu3+ ion in the nanoparticle. Given its exceptional biocompatibility and pH-dependent fluorescence intensity for a wide range of pH from 0.83 to 8.97, the probe can be used as a potential candidate for pH sensing of biological fluid.
期刊介绍:
Journal of Fluorescence is an international forum for the publication of peer-reviewed original articles that advance the practice of this established spectroscopic technique. Topics covered include advances in theory/and or data analysis, studies of the photophysics of aromatic molecules, solvent, and environmental effects, development of stationary or time-resolved measurements, advances in fluorescence microscopy, imaging, photobleaching/recovery measurements, and/or phosphorescence for studies of cell biology, chemical biology and the advanced uses of fluorescence in flow cytometry/analysis, immunology, high throughput screening/drug discovery, DNA sequencing/arrays, genomics and proteomics. Typical applications might include studies of macromolecular dynamics and conformation, intracellular chemistry, and gene expression. The journal also publishes papers that describe the synthesis and characterization of new fluorophores, particularly those displaying unique sensitivities and/or optical properties. In addition to original articles, the Journal also publishes reviews, rapid communications, short communications, letters to the editor, topical news articles, and technical and design notes.