A DFT Study of Solvent and Substituent Effects on the Adsorptive and Photovoltaic Properties of Some Selected Porphyrin Derivatives for DSSC Application.
Kayode Sanusi, Nafisat O Fatomi, Adebayo A Aderogba, Phindile B Khoza, Emmanuel Igumbor
{"title":"A DFT Study of Solvent and Substituent Effects on the Adsorptive and Photovoltaic Properties of Some Selected Porphyrin Derivatives for DSSC Application.","authors":"Kayode Sanusi, Nafisat O Fatomi, Adebayo A Aderogba, Phindile B Khoza, Emmanuel Igumbor","doi":"10.1007/s10895-023-03447-1","DOIUrl":null,"url":null,"abstract":"<p><p>A DFT/TD-DFT method was employed to study the effects of structural modification and solvent variation on the solubility, adsorptive, and photovoltaic properties of six porphyrins (A-F) obtained by structurally modifying two literature porphyrins A and D. The properties of interest were studied in vacuum, acetonitrile (AcCN), dichloromethane (DCM), dimethyl sulphoxide (DMSO), and ethanol (EtOH) for possible application of the molecules as sensitizers in dye-sensitized solar cells (DSSCs). Electronic absorption properties of the molecules were computed via potential energy surface scan, and thermodynamic data were obtained by DFT calculations in the selected media. Solubility properties of the molecules were mostly enhanced with DMSO as the solvent. The adsorptivity of the molecules onto mesoporous titanium (IV) oxide surface were predicted to be enhanced in the presence of DMSO. Most of the molecules were found to exhibit their highest photovoltaic activity measured in terms of the incident photon conversion efficiency (IPCE) in AcCN and DCM, rather than in DMSO due to its high viscosity and the ability to use its oxygen to form the catenating O-Ti<sup>4+</sup> bond with the Ti<sup>4+</sup> of the TiO<sub>2</sub>, causing inhibition of electron movement on the semiconductor surface. In general, the computed photovoltaic (PV) properties were found to be enhanced with -CO<sub>2</sub>H group as the substituent, and in AcCN or DCM as the solvent.</p>","PeriodicalId":15800,"journal":{"name":"Journal of Fluorescence","volume":" ","pages":"2513-2522"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10895-023-03447-1","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
A DFT/TD-DFT method was employed to study the effects of structural modification and solvent variation on the solubility, adsorptive, and photovoltaic properties of six porphyrins (A-F) obtained by structurally modifying two literature porphyrins A and D. The properties of interest were studied in vacuum, acetonitrile (AcCN), dichloromethane (DCM), dimethyl sulphoxide (DMSO), and ethanol (EtOH) for possible application of the molecules as sensitizers in dye-sensitized solar cells (DSSCs). Electronic absorption properties of the molecules were computed via potential energy surface scan, and thermodynamic data were obtained by DFT calculations in the selected media. Solubility properties of the molecules were mostly enhanced with DMSO as the solvent. The adsorptivity of the molecules onto mesoporous titanium (IV) oxide surface were predicted to be enhanced in the presence of DMSO. Most of the molecules were found to exhibit their highest photovoltaic activity measured in terms of the incident photon conversion efficiency (IPCE) in AcCN and DCM, rather than in DMSO due to its high viscosity and the ability to use its oxygen to form the catenating O-Ti4+ bond with the Ti4+ of the TiO2, causing inhibition of electron movement on the semiconductor surface. In general, the computed photovoltaic (PV) properties were found to be enhanced with -CO2H group as the substituent, and in AcCN or DCM as the solvent.
期刊介绍:
Journal of Fluorescence is an international forum for the publication of peer-reviewed original articles that advance the practice of this established spectroscopic technique. Topics covered include advances in theory/and or data analysis, studies of the photophysics of aromatic molecules, solvent, and environmental effects, development of stationary or time-resolved measurements, advances in fluorescence microscopy, imaging, photobleaching/recovery measurements, and/or phosphorescence for studies of cell biology, chemical biology and the advanced uses of fluorescence in flow cytometry/analysis, immunology, high throughput screening/drug discovery, DNA sequencing/arrays, genomics and proteomics. Typical applications might include studies of macromolecular dynamics and conformation, intracellular chemistry, and gene expression. The journal also publishes papers that describe the synthesis and characterization of new fluorophores, particularly those displaying unique sensitivities and/or optical properties. In addition to original articles, the Journal also publishes reviews, rapid communications, short communications, letters to the editor, topical news articles, and technical and design notes.