Lung Organoid on a Chip: A New Ensemble Model for Preclinical Studies.

IF 2.5 4区 医学 Q3 CELL & TISSUE ENGINEERING
International journal of stem cells Pub Date : 2024-02-28 Epub Date: 2023-10-11 DOI:10.15283/ijsc23090
Hyung-Jun Kim, Sohyun Park, Seonghyeon Jeong, Jihoon Kim, Young-Jae Cho
{"title":"Lung Organoid on a Chip: A New Ensemble Model for Preclinical Studies.","authors":"Hyung-Jun Kim, Sohyun Park, Seonghyeon Jeong, Jihoon Kim, Young-Jae Cho","doi":"10.15283/ijsc23090","DOIUrl":null,"url":null,"abstract":"<p><p>The lung is a complex organ comprising a branched airway that connects the large airway and millions of terminal gas-exchange units. Traditional pulmonary biomedical research by using cell line model system have limitations such as lack of cellular heterogeneity, animal models also have limitations including ethical concern, race-to-race variations, and physiological differences found <i>in vivo</i>. Organoids and on-a-chip models offer viable solutions for these issues. Organoids are three-dimensional, self-organized construct composed of numerous cells derived from stem cells cultured with growth factors required for the maintenance of stem cells. On-a-chip models are biomimetic microsystems which are able to customize to use microfluidic systems to simulate blood flow in blood channels or vacuum to simulate human breathing. This review summarizes the key components and previous biomedical studies conducted on lung organoids and lung-on-a-chip models, and introduces potential future applications. Considering the importance and benefits of these model systems, we believe that the system will offer better platform to biomedical researchers on pulmonary diseases, such as emerging viral infection, progressive fibrotic pulmonary diseases, or primary or metastatic lung cancer.</p>","PeriodicalId":14392,"journal":{"name":"International journal of stem cells","volume":" ","pages":"30-37"},"PeriodicalIF":2.5000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10899883/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of stem cells","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.15283/ijsc23090","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The lung is a complex organ comprising a branched airway that connects the large airway and millions of terminal gas-exchange units. Traditional pulmonary biomedical research by using cell line model system have limitations such as lack of cellular heterogeneity, animal models also have limitations including ethical concern, race-to-race variations, and physiological differences found in vivo. Organoids and on-a-chip models offer viable solutions for these issues. Organoids are three-dimensional, self-organized construct composed of numerous cells derived from stem cells cultured with growth factors required for the maintenance of stem cells. On-a-chip models are biomimetic microsystems which are able to customize to use microfluidic systems to simulate blood flow in blood channels or vacuum to simulate human breathing. This review summarizes the key components and previous biomedical studies conducted on lung organoids and lung-on-a-chip models, and introduces potential future applications. Considering the importance and benefits of these model systems, we believe that the system will offer better platform to biomedical researchers on pulmonary diseases, such as emerging viral infection, progressive fibrotic pulmonary diseases, or primary or metastatic lung cancer.

芯片上的肺类器官:一种用于临床前研究的新集合模型。
肺是一个复杂的器官,包括连接大气道和数百万个末端气体交换单元的分支气道。使用细胞系模型系统进行的传统肺部生物医学研究具有局限性,如缺乏细胞异质性,动物模型也存在局限性,包括伦理问题、种族差异和体内生理差异。类有机物和片上模型为这些问题提供了可行的解决方案。类器官是一种三维的自组织结构,由大量来源于干细胞的细胞组成,干细胞与维持干细胞所需的生长因子一起培养。芯片上模型是仿生微系统,能够定制使用微流体系统来模拟血液通道中的血液流动或真空来模拟人类呼吸。这篇综述总结了肺类器官和肺片上模型的关键组成部分和以往的生物医学研究,并介绍了潜在的未来应用。考虑到这些模型系统的重要性和益处,我们相信该系统将为肺部疾病的生物医学研究人员提供更好的平台,如新出现的病毒感染、进行性纤维化肺部疾病或原发性或转移性癌症。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International journal of stem cells
International journal of stem cells Biochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
5.10
自引率
4.30%
发文量
38
期刊介绍: International Journal of Stem Cells (Int J Stem Cells), a peer-reviewed open access journal, principally aims to provide a forum for investigators in the field of stem cell biology to present their research findings and share their visions and opinions. Int J Stem Cells covers all aspects of stem cell biology including basic, clinical and translational research on genetics, biochemistry, and physiology of various types of stem cells including embryonic, adult and induced stem cells. Reports on epigenetics, genomics, proteomics, metabolomics of stem cells are welcome as well. Int J Stem Cells also publishes review articles, technical reports and treatise on ethical issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信