Land Use and Land Cover Change Detection Using the Random Forest Approach: The Case of The Upper Blue Nile River Basin, Ethiopia

IF 4.4 4区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Birhan Getachew Tikuye, Milos Rusnak, Busnur R. Manjunatha, Jithin Jose
{"title":"Land Use and Land Cover Change Detection Using the Random Forest Approach: The Case of The Upper Blue Nile River Basin, Ethiopia","authors":"Birhan Getachew Tikuye,&nbsp;Milos Rusnak,&nbsp;Busnur R. Manjunatha,&nbsp;Jithin Jose","doi":"10.1002/gch2.202300155","DOIUrl":null,"url":null,"abstract":"<p>Monitoring land use change dynamics is critical for tackling food security, climate change, and biodiversity loss on a global scale. This study is designed to classify land use and land cover in the upper Blue Nile River Basin (BNRB) using a random forest (RF) algorithm. The Landsat images for Landsat 45, Landsat 7, and Landsat 8 are used for classification purposes. The study area is classified into seven land use/land cover classes: cultivated lands, bare lands, built-ups, forests, grazing lands, shrublands, and waterbodies. The accuracy of classified images is 83%, 85%, and 91% using the Kappa index of agreements. From 1983 to 2022 periods, cultivated lands and built-up areas increased by 47541 and 1777 km2, respectively, at the expense of grazing lands, shrublands, and forests. Furthermore, the area of water bodies has increased by 662 km2 due to the construction of small and large-scale irrigation and hydroelectric power generation dams. The main factors that determine agricultural land expansion are related to population growth. Therefore, land use and land cover change detection using a random forest is an important technique for multispectral satellite data classification to understand the optimal use of natural resources, conservation practices, and decision-making for sustainable development.</p>","PeriodicalId":12646,"journal":{"name":"Global Challenges","volume":"7 10","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2023-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gch2.202300155","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Challenges","FirstCategoryId":"103","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gch2.202300155","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Monitoring land use change dynamics is critical for tackling food security, climate change, and biodiversity loss on a global scale. This study is designed to classify land use and land cover in the upper Blue Nile River Basin (BNRB) using a random forest (RF) algorithm. The Landsat images for Landsat 45, Landsat 7, and Landsat 8 are used for classification purposes. The study area is classified into seven land use/land cover classes: cultivated lands, bare lands, built-ups, forests, grazing lands, shrublands, and waterbodies. The accuracy of classified images is 83%, 85%, and 91% using the Kappa index of agreements. From 1983 to 2022 periods, cultivated lands and built-up areas increased by 47541 and 1777 km2, respectively, at the expense of grazing lands, shrublands, and forests. Furthermore, the area of water bodies has increased by 662 km2 due to the construction of small and large-scale irrigation and hydroelectric power generation dams. The main factors that determine agricultural land expansion are related to population growth. Therefore, land use and land cover change detection using a random forest is an important technique for multispectral satellite data classification to understand the optimal use of natural resources, conservation practices, and decision-making for sustainable development.

Abstract Image

使用随机森林方法检测土地利用和土地覆盖变化:以埃塞俄比亚青尼罗河上游流域为例。
监测土地利用变化动态对于应对全球范围内的粮食安全、气候变化和生物多样性丧失至关重要。本研究旨在使用随机森林(RF)算法对青尼罗河上游流域(BNRB)的土地利用和土地覆盖进行分类。陆地卫星45、陆地卫星7和陆地卫星8的陆地卫星图像用于分类目的。研究区域分为七类土地利用/土地覆盖:耕地、裸地、建筑物、森林、牧场、灌木林和水体。使用Kappa协议指数,分类图像的准确率分别为83%、85%和91%。从1983年到2022年,耕地和建成区面积分别增加了47541平方公里和1777平方公里,而牧场、灌木林和森林的面积则有所减少。此外,由于建造了小型和大型灌溉和水力发电大坝,水体面积增加了662平方公里。决定农业用地扩张的主要因素与人口增长有关。因此,使用随机森林进行土地利用和土地覆盖变化检测是多光谱卫星数据分类的一项重要技术,以了解自然资源的最佳利用、保护实践和可持续发展决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Global Challenges
Global Challenges MULTIDISCIPLINARY SCIENCES-
CiteScore
8.70
自引率
0.00%
发文量
79
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信