Identification of DNA methylation of CAPN10 gene changes in the patients with type 2 diabetes mellitus as a predictive biomarker instead of HbA1c, random blood sugar, lipid profile, kidney function test, and some risk factors.
{"title":"Identification of DNA methylation of <i>CAPN10</i> gene changes in the patients with type 2 diabetes mellitus as a predictive biomarker instead of HbA1c, random blood sugar, lipid profile, kidney function test, and some risk factors.","authors":"Harem Othman Smail, Dlnya Asaad Mohamad","doi":"10.2478/enr-2023-0025","DOIUrl":null,"url":null,"abstract":"<p><p><b>Objective.</b> Nowadays, type 2 diabetes mellitus (T2DM) is the most common chronic endocrine disorder, affecting an estimated 5-10% of adults worldwide and this disease rapidly increases in the Kurdistan region population. This research aims to identify DNA methylation change in the <i>CPAN10</i> gene as a predictive biomarker in T2DM and the association between DNA methylation status with lipid profile and kidney function test. <b>Methods.</b> The participants (113) were divided into three groups: diabetes group (47), prediabetes group (36), and control group (30). The study was carried out on patients who visited the private clinical sectors between August and December 2021 in the Koya city Kurdistan region of Iraq. To determine DNA methylation status, methylation-specific PCR (MPS) with paired primer for each methylated and unmethylated region was used. The Mann-Whitney U test and Spearman's correlation were performed for statistical analysis of data and a value of p<0.05 was considered significant. <b>Results.</b> The obtained results show that DNA hypermethylation was recorded in the promoter region in the samples of the diabetes and prediabetes groups compared to the healthy group (control). Various factors also affected the level of DNA methylation, such as HbA1c in prediabetes group and body mass index in the control group. <b>Conclusion.</b> These results indicate that DNA methylation changes in the <i>CAPN10</i> gene promoter region may be used as a potential predictive biomarker to diagnose T2DM; however, this study requires further data to support this evidence.</p>","PeriodicalId":11650,"journal":{"name":"Endocrine regulations","volume":"57 1","pages":"221-234"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endocrine regulations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/enr-2023-0025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"Print","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Objective. Nowadays, type 2 diabetes mellitus (T2DM) is the most common chronic endocrine disorder, affecting an estimated 5-10% of adults worldwide and this disease rapidly increases in the Kurdistan region population. This research aims to identify DNA methylation change in the CPAN10 gene as a predictive biomarker in T2DM and the association between DNA methylation status with lipid profile and kidney function test. Methods. The participants (113) were divided into three groups: diabetes group (47), prediabetes group (36), and control group (30). The study was carried out on patients who visited the private clinical sectors between August and December 2021 in the Koya city Kurdistan region of Iraq. To determine DNA methylation status, methylation-specific PCR (MPS) with paired primer for each methylated and unmethylated region was used. The Mann-Whitney U test and Spearman's correlation were performed for statistical analysis of data and a value of p<0.05 was considered significant. Results. The obtained results show that DNA hypermethylation was recorded in the promoter region in the samples of the diabetes and prediabetes groups compared to the healthy group (control). Various factors also affected the level of DNA methylation, such as HbA1c in prediabetes group and body mass index in the control group. Conclusion. These results indicate that DNA methylation changes in the CAPN10 gene promoter region may be used as a potential predictive biomarker to diagnose T2DM; however, this study requires further data to support this evidence.