Maksym Sharma, Paulina V Wyszkiewicz, Alexander M Matheson, David G McCormack, Grace Parraga
{"title":"Chest MRI and CT Predictors of 10-Year All-Cause Mortality in COPD.","authors":"Maksym Sharma, Paulina V Wyszkiewicz, Alexander M Matheson, David G McCormack, Grace Parraga","doi":"10.1080/15412555.2023.2259224","DOIUrl":null,"url":null,"abstract":"<p><p>Pulmonary imaging measurements using magnetic resonance imaging (MRI) and computed tomography (CT) have the potential to deepen our understanding of chronic obstructive pulmonary disease (COPD) by measuring airway and parenchymal pathologic information that cannot be provided by spirometry. Currently, MRI and CT measurements are not included in mortality risk predictions, diagnosis, or COPD staging. We evaluated baseline pulmonary function, MRI and CT measurements alongside imaging texture-features to predict 10-year all-cause mortality in ex-smokers with (<i>n</i> = 93; 31 females; 70 ± 9years) and without (<i>n</i> = 69; 29 females, 69 ± 9years) COPD. CT airway and vessel measurements, helium-3 (<sup>3</sup>He) MRI ventilation defect percent (VDP) and apparent diffusion coefficients (ADC) were quantified. MRI and CT texture-features were extracted using PyRadiomics (version2.2.0). Associations between 10-year all-cause mortality and all clinical and imaging measurements were evaluated using multivariable regression model odds-ratios. Machine-learning predictive models for 10-year all-cause mortality were evaluated using area-under-receiver-operator-characteristic-curve (AUC), sensitivity and specificity analyses. DL<sub>CO</sub> (%<sub>pred</sub>) (HR = 0.955, 95%CI: 0.934-0.976, <i>p</i> < 0.001), MRI ADC (HR = 1.843, 95%CI: 1.260-2.871, <i>p</i> < 0.001), and CT informational-measure-of-correlation (HR = 3.546, 95% CI: 1.660-7.573, <i>p</i> = 0.001) were the strongest predictors of 10-year mortality. A machine-learning model trained on clinical, imaging, and imaging textures was the best predictive model (AUC = 0.82, sensitivity = 83%, specificity = 84%) and outperformed the solely clinical model (AUC = 0.76, sensitivity = 77%, specificity = 79%). In ex-smokers, regardless of COPD status, addition of CT and MR imaging texture measurements to clinical models provided unique prognostic information of mortality risk that can allow for better clinical management.<b>Clinical Trial Registration:</b> www.clinicaltrials.gov NCT02279329.</p>","PeriodicalId":10704,"journal":{"name":"COPD: Journal of Chronic Obstructive Pulmonary Disease","volume":"20 1","pages":"307-320"},"PeriodicalIF":2.2000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"COPD: Journal of Chronic Obstructive Pulmonary Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15412555.2023.2259224","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
引用次数: 0
Abstract
Pulmonary imaging measurements using magnetic resonance imaging (MRI) and computed tomography (CT) have the potential to deepen our understanding of chronic obstructive pulmonary disease (COPD) by measuring airway and parenchymal pathologic information that cannot be provided by spirometry. Currently, MRI and CT measurements are not included in mortality risk predictions, diagnosis, or COPD staging. We evaluated baseline pulmonary function, MRI and CT measurements alongside imaging texture-features to predict 10-year all-cause mortality in ex-smokers with (n = 93; 31 females; 70 ± 9years) and without (n = 69; 29 females, 69 ± 9years) COPD. CT airway and vessel measurements, helium-3 (3He) MRI ventilation defect percent (VDP) and apparent diffusion coefficients (ADC) were quantified. MRI and CT texture-features were extracted using PyRadiomics (version2.2.0). Associations between 10-year all-cause mortality and all clinical and imaging measurements were evaluated using multivariable regression model odds-ratios. Machine-learning predictive models for 10-year all-cause mortality were evaluated using area-under-receiver-operator-characteristic-curve (AUC), sensitivity and specificity analyses. DLCO (%pred) (HR = 0.955, 95%CI: 0.934-0.976, p < 0.001), MRI ADC (HR = 1.843, 95%CI: 1.260-2.871, p < 0.001), and CT informational-measure-of-correlation (HR = 3.546, 95% CI: 1.660-7.573, p = 0.001) were the strongest predictors of 10-year mortality. A machine-learning model trained on clinical, imaging, and imaging textures was the best predictive model (AUC = 0.82, sensitivity = 83%, specificity = 84%) and outperformed the solely clinical model (AUC = 0.76, sensitivity = 77%, specificity = 79%). In ex-smokers, regardless of COPD status, addition of CT and MR imaging texture measurements to clinical models provided unique prognostic information of mortality risk that can allow for better clinical management.Clinical Trial Registration: www.clinicaltrials.gov NCT02279329.
期刊介绍:
From pathophysiology and cell biology to pharmacology and psychosocial impact, COPD: Journal Of Chronic Obstructive Pulmonary Disease publishes a wide range of original research, reviews, case studies, and conference proceedings to promote advances in the pathophysiology, diagnosis, management, and control of lung and airway disease and inflammation - providing a unique forum for the discussion, design, and evaluation of more efficient and effective strategies in patient care.