Improved preculture management for Cupriavidus necator cultivations.

IF 2 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Biotechnology Letters Pub Date : 2023-12-01 Epub Date: 2023-10-13 DOI:10.1007/s10529-023-03436-1
Michelle-Sophie Gerlach, Peter Neubauer, Matthias Gimpel
{"title":"Improved preculture management for Cupriavidus necator cultivations.","authors":"Michelle-Sophie Gerlach, Peter Neubauer, Matthias Gimpel","doi":"10.1007/s10529-023-03436-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Research on hydrogenases from Cupriavidus necator has been ongoing for more than two decades and still today the common methods for culture inoculation are used. These methods were never adapted to the requirements of modified bacterial strains, resulting in different physiological states of the bacteria in the precultures, which in turn lead prolonged and different lag-phases.</p><p><strong>Results: </strong>In order to obtain uniform and always equally fit precultures for inoculation, we have established in this study an optimized protocol for precultures of the derivative of C. necator HF210 (C. necator HP80) which is used for homologous overexpression of the genes for the NAD<sup>+</sup>-reducing soluble hydrogenase (SH). We compared different media for preculture growth and determined the optimal time point for harvest. The protocol obtained in this study is based on two subsequent precultures, the first one in complex nutrient broth medium (NB) and a second one in fructose -nitrogen mineral salt medium (FN).</p><p><strong>Conclusion: </strong>Despite having two subsequent precultures our protocol reduces the preculture time to less than 30 h and provides reproducible precultures for cultivation of C. necator HP80.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":" ","pages":"1487-1493"},"PeriodicalIF":2.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10635987/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10529-023-03436-1","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/13 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: Research on hydrogenases from Cupriavidus necator has been ongoing for more than two decades and still today the common methods for culture inoculation are used. These methods were never adapted to the requirements of modified bacterial strains, resulting in different physiological states of the bacteria in the precultures, which in turn lead prolonged and different lag-phases.

Results: In order to obtain uniform and always equally fit precultures for inoculation, we have established in this study an optimized protocol for precultures of the derivative of C. necator HF210 (C. necator HP80) which is used for homologous overexpression of the genes for the NAD+-reducing soluble hydrogenase (SH). We compared different media for preculture growth and determined the optimal time point for harvest. The protocol obtained in this study is based on two subsequent precultures, the first one in complex nutrient broth medium (NB) and a second one in fructose -nitrogen mineral salt medium (FN).

Conclusion: Despite having two subsequent precultures our protocol reduces the preculture time to less than 30 h and provides reproducible precultures for cultivation of C. necator HP80.

Abstract Image

改进了三角锥栽培的预培养管理。
目的:对Cupriavidus necator的氢化酶的研究已经进行了20多年,直到今天仍然使用常用的培养接种方法。这些方法从未适应改良菌株的要求,导致细菌在预培养物中的生理状态不同,这反过来又导致延长和不同的滞后期。结果:为了获得均匀且始终同样适合接种的预培养物,我们在本研究中建立了一种用于C.necator HF210衍生物(C.necator HP80)的预培养的优化方案,该衍生物用于NAD+还原可溶性氢化酶(SH)基因的同源过表达。我们比较了预培养生长的不同培养基,并确定了收获的最佳时间点。本研究中获得的方案基于两个后续的预培养,第一个在复合营养肉汤培养基(NB)中,第二个在果糖-氮矿物盐培养基(FN)中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biotechnology Letters
Biotechnology Letters 工程技术-生物工程与应用微生物
CiteScore
5.90
自引率
3.70%
发文量
108
审稿时长
1.2 months
期刊介绍: Biotechnology Letters is the world’s leading rapid-publication primary journal dedicated to biotechnology as a whole – that is to topics relating to actual or potential applications of biological reactions affected by microbial, plant or animal cells and biocatalysts derived from them. All relevant aspects of molecular biology, genetics and cell biochemistry, of process and reactor design, of pre- and post-treatment steps, and of manufacturing or service operations are therefore included. Contributions from industrial and academic laboratories are equally welcome. We also welcome contributions covering biotechnological aspects of regenerative medicine and biomaterials and also cancer biotechnology. Criteria for the acceptance of papers relate to our aim of publishing useful and informative results that will be of value to other workers in related fields. The emphasis is very much on novelty and immediacy in order to justify rapid publication of authors’ results. It should be noted, however, that we do not normally publish papers (but this is not absolute) that deal with unidentified consortia of microorganisms (e.g. as in activated sludge) as these results may not be easily reproducible in other laboratories. Papers describing the isolation and identification of microorganisms are not regarded as appropriate but such information can be appended as supporting information to a paper. Papers dealing with simple process development are usually considered to lack sufficient novelty or interest to warrant publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信