Laura Mikél McNair, Jens Velde Andersen, Helle Sønderby Waagepetersen
{"title":"Stable isotope tracing reveals disturbed cellular energy and glutamate metabolism in hippocampal slices of aged male mice","authors":"Laura Mikél McNair, Jens Velde Andersen, Helle Sønderby Waagepetersen","doi":"10.1016/j.neuint.2023.105626","DOIUrl":null,"url":null,"abstract":"<div><p>Neurons and astrocytes work in close metabolic collaboration, linking neurotransmission to brain energy and neurotransmitter metabolism. Dysregulated energy metabolism is a hallmark of the aging brain and may underlie the progressive age-dependent cognitive decline. However, astrocyte and neurotransmitter metabolism remains understudied in aging brain research. In particular, how aging affects metabolism of glutamate, being the primary excitatory neurotransmitter, is still poorly understood. Here we investigated critical aspects of cellular energy metabolism in the aging male mouse hippocampus using stable isotope tracing <em>in vitro</em>. Metabolism of [U–<sup>13</sup>C]glucose demonstrated an elevated glycolytic capacity of aged hippocampal slices, whereas oxidative [U–<sup>13</sup>C]glucose metabolism in the TCA cycle was significantly reduced with aging. In addition, metabolism of [1,2–<sup>13</sup>C]acetate, reflecting astrocyte energy metabolism, was likewise reduced in the hippocampal slices of old mice. In contrast, uptake and subsequent metabolism of [U–<sup>13</sup>C]glutamate was elevated, suggesting increased capacity for cellular glutamate handling with aging. Finally, metabolism of [<sup>15</sup>N]glutamate was maintained in the aged slices, demonstrating sustained glutamate nitrogen metabolism. Collectively, this study reveals fundamental alterations in cellular energy and neurotransmitter metabolism in the aging brain, which may contribute to age-related hippocampal deficits.</p></div>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":"171 ","pages":"Article 105626"},"PeriodicalIF":4.4000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0197018623001547/pdfft?md5=d366e106edf34772f7a86e79c0c1d838&pid=1-s2.0-S0197018623001547-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurochemistry international","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0197018623001547","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Neurons and astrocytes work in close metabolic collaboration, linking neurotransmission to brain energy and neurotransmitter metabolism. Dysregulated energy metabolism is a hallmark of the aging brain and may underlie the progressive age-dependent cognitive decline. However, astrocyte and neurotransmitter metabolism remains understudied in aging brain research. In particular, how aging affects metabolism of glutamate, being the primary excitatory neurotransmitter, is still poorly understood. Here we investigated critical aspects of cellular energy metabolism in the aging male mouse hippocampus using stable isotope tracing in vitro. Metabolism of [U–13C]glucose demonstrated an elevated glycolytic capacity of aged hippocampal slices, whereas oxidative [U–13C]glucose metabolism in the TCA cycle was significantly reduced with aging. In addition, metabolism of [1,2–13C]acetate, reflecting astrocyte energy metabolism, was likewise reduced in the hippocampal slices of old mice. In contrast, uptake and subsequent metabolism of [U–13C]glutamate was elevated, suggesting increased capacity for cellular glutamate handling with aging. Finally, metabolism of [15N]glutamate was maintained in the aged slices, demonstrating sustained glutamate nitrogen metabolism. Collectively, this study reveals fundamental alterations in cellular energy and neurotransmitter metabolism in the aging brain, which may contribute to age-related hippocampal deficits.
期刊介绍:
Neurochemistry International is devoted to the rapid publication of outstanding original articles and timely reviews in neurochemistry. Manuscripts on a broad range of topics will be considered, including molecular and cellular neurochemistry, neuropharmacology and genetic aspects of CNS function, neuroimmunology, metabolism as well as the neurochemistry of neurological and psychiatric disorders of the CNS.