Qingpeng Zhang , Wenting Xia , Xingyue Zhou , Chengying Yang , Ziwei Lu , Shengwen Wu , Xiaobo Lu , Jinghua Yang , Cuihong Jin
{"title":"PS-MPs or their co-exposure with cadmium impair male reproductive function through the miR-199a-5p/HIF-1α-mediated ferroptosis pathway","authors":"Qingpeng Zhang , Wenting Xia , Xingyue Zhou , Chengying Yang , Ziwei Lu , Shengwen Wu , Xiaobo Lu , Jinghua Yang , Cuihong Jin","doi":"10.1016/j.envpol.2023.122723","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Microplastics (MPs) and cadmium (Cd) exist extensively in ambient environments and probably influence negatively on human health. However, the </span>potential reproductive toxicity of MPs or MPs + Cd remains unknown. This study was aimed to observe the reproductive changes of male mice treated orally for 35 days with PS-MPs (100 mg/kg), CdCl</span><sub>2</sub> (5 mg/kg) and PS-MPs plus CdCl<sub>2</sub> mixture. We found that subchronic exposure to PS-MPs damaged mouse testicular tissue structure, reduced sperm quality and testosterone levels. Moreover, the reproductive toxicity in 0.1 μm group was stronger than 1 μm group, and mixture group was more severe than single particle size ones. Meanwhile, co-exposure of PS-MPs and Cd exacerbated reproductive injury in male mice, with an ascending toxicity of Cd, 1 μm + Cd, 0.1 μm + Cd, and 0.1+1 μm + Cd. In addition, we discovered that the testicular damage induced by PS-MPs or PS-MPs + Cd was associated with interfering the miR-199a-5p/HIF-1α/ferroptosis pathway. Promisingly, these findings will shed new light on how PS-MPs and PS-MPs + Cd damage male reproductive function.</p></div>","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"339 ","pages":"Article 122723"},"PeriodicalIF":7.3000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0269749123017256","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Microplastics (MPs) and cadmium (Cd) exist extensively in ambient environments and probably influence negatively on human health. However, the potential reproductive toxicity of MPs or MPs + Cd remains unknown. This study was aimed to observe the reproductive changes of male mice treated orally for 35 days with PS-MPs (100 mg/kg), CdCl2 (5 mg/kg) and PS-MPs plus CdCl2 mixture. We found that subchronic exposure to PS-MPs damaged mouse testicular tissue structure, reduced sperm quality and testosterone levels. Moreover, the reproductive toxicity in 0.1 μm group was stronger than 1 μm group, and mixture group was more severe than single particle size ones. Meanwhile, co-exposure of PS-MPs and Cd exacerbated reproductive injury in male mice, with an ascending toxicity of Cd, 1 μm + Cd, 0.1 μm + Cd, and 0.1+1 μm + Cd. In addition, we discovered that the testicular damage induced by PS-MPs or PS-MPs + Cd was associated with interfering the miR-199a-5p/HIF-1α/ferroptosis pathway. Promisingly, these findings will shed new light on how PS-MPs and PS-MPs + Cd damage male reproductive function.
期刊介绍:
Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health.
Subject areas include, but are not limited to:
• Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies;
• Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change;
• Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects;
• Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects;
• Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest;
• New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.