{"title":"Gastruloid optimization.","authors":"Lara Avni, Naama Farag, Binita Ghosh, Iftach Nachman","doi":"10.1042/ETLS20230096","DOIUrl":null,"url":null,"abstract":"<p><p>The young field of gastruloids brings promise to modeling and understanding early embryonic development. However, being a complex model, gastruloids are prone to variability at different levels. In this perspective, we define the different levels of gastruloid variability, and parameters over which it can be measured. We discuss potential sources for variability, and then propose methods to better control and reduce it. We provide an example from definitive endoderm progression in gastruloids, where we harness gastruloid-to-gastruloid variation in early parameters to identify key driving factors for endoderm morphology. We then devise interventions that steer morphological outcome. A better control over the developmental progression of gastruloids will enhance their utility in both basic research and biomedical applications.</p>","PeriodicalId":46394,"journal":{"name":"Emerging Topics in Life Sciences","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10754328/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging Topics in Life Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1042/ETLS20230096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The young field of gastruloids brings promise to modeling and understanding early embryonic development. However, being a complex model, gastruloids are prone to variability at different levels. In this perspective, we define the different levels of gastruloid variability, and parameters over which it can be measured. We discuss potential sources for variability, and then propose methods to better control and reduce it. We provide an example from definitive endoderm progression in gastruloids, where we harness gastruloid-to-gastruloid variation in early parameters to identify key driving factors for endoderm morphology. We then devise interventions that steer morphological outcome. A better control over the developmental progression of gastruloids will enhance their utility in both basic research and biomedical applications.