{"title":"Three-Dimensional Graphene Promotes the Proliferation of Cholinergic Neurons.","authors":"Ziyun Jiang, Linhong Zhou, Miao Xiao, Sancheng Ma, Guosheng Cheng","doi":"10.1159/000534255","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>An early substantial loss of basal forebrain cholinergic neurons (BFCNs) is a common property of Alzheimer's disease and the degeneration of functional BFCNs is related to learning and memory deficits. As a biocompatible and conductive scaffold for growth of neural stem cells, three-dimensional graphene foam (3D-GF) supports applications in tissue engineering and regenerative medicine. Although its effects on differentiation have been demonstrated, the effect of 3D-GF scaffold on the generation of BFCNs still remains unknown.</p><p><strong>Methods: </strong>In this study, we used 3D-GF as a culture substrate for neural progenitor cells (NPCs) and demonstrated that this scaffold material promotes the differentiation of BFCNs while maintaining excellent cell viability and proliferation.</p><p><strong>Results: </strong>Immunofluorescence analysis, real-time polymerase chain reaction, Western blotting, and ELISA revealed that the proportion of BFCNs at 21 days of differentiation reached approximately 30.5% on 3D-GF compared with TCPS group that only presented 9.7%. Furthermore, a cell adhesion study suggested that 3D-GF scaffold enhances the expression of adhesion proteins including vinculin, integrin, and N-cadherin. These findings indicate that 3D-GF scaffold materials are preferable candidates for the differentiation of BFCNs from NPCs.</p><p><strong>Conclusions: </strong>These results suggest new opportunities for the application of 3D-GF scaffold as a neural scaffold for cholinergic neurons therapies based on NPCs.</p>","PeriodicalId":9717,"journal":{"name":"Cells Tissues Organs","volume":" ","pages":"316-325"},"PeriodicalIF":2.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells Tissues Organs","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1159/000534255","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: An early substantial loss of basal forebrain cholinergic neurons (BFCNs) is a common property of Alzheimer's disease and the degeneration of functional BFCNs is related to learning and memory deficits. As a biocompatible and conductive scaffold for growth of neural stem cells, three-dimensional graphene foam (3D-GF) supports applications in tissue engineering and regenerative medicine. Although its effects on differentiation have been demonstrated, the effect of 3D-GF scaffold on the generation of BFCNs still remains unknown.
Methods: In this study, we used 3D-GF as a culture substrate for neural progenitor cells (NPCs) and demonstrated that this scaffold material promotes the differentiation of BFCNs while maintaining excellent cell viability and proliferation.
Results: Immunofluorescence analysis, real-time polymerase chain reaction, Western blotting, and ELISA revealed that the proportion of BFCNs at 21 days of differentiation reached approximately 30.5% on 3D-GF compared with TCPS group that only presented 9.7%. Furthermore, a cell adhesion study suggested that 3D-GF scaffold enhances the expression of adhesion proteins including vinculin, integrin, and N-cadherin. These findings indicate that 3D-GF scaffold materials are preferable candidates for the differentiation of BFCNs from NPCs.
Conclusions: These results suggest new opportunities for the application of 3D-GF scaffold as a neural scaffold for cholinergic neurons therapies based on NPCs.
期刊介绍:
''Cells Tissues Organs'' aims at bridging the gap between cell biology and developmental biology and the emerging fields of regenerative medicine (stem cell biology, tissue engineering, artificial organs, in vitro systems and transplantation biology). CTO offers a rapid and fair peer-review and exquisite reproduction quality. Special topic issues, entire issues of the journal devoted to a single research topic within the range of interests of the journal, are published at irregular intervals.