{"title":"Three-Dimensional Graphene Promotes the Proliferation of Cholinergic Neurons.","authors":"Ziyun Jiang, Linhong Zhou, Miao Xiao, Sancheng Ma, Guosheng Cheng","doi":"10.1159/000534255","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>An early substantial loss of basal forebrain cholinergic neurons (BFCNs) is a common property of Alzheimer's disease and the degeneration of functional BFCNs is related to learning and memory deficits. As a biocompatible and conductive scaffold for growth of neural stem cells, three-dimensional graphene foam (3D-GF) supports applications in tissue engineering and regenerative medicine. Although its effects on differentiation have been demonstrated, the effect of 3D-GF scaffold on the generation of BFCNs still remains unknown.</p><p><strong>Methods: </strong>In this study, we used 3D-GF as a culture substrate for neural progenitor cells (NPCs) and demonstrated that this scaffold material promotes the differentiation of BFCNs while maintaining excellent cell viability and proliferation.</p><p><strong>Results: </strong>Immunofluorescence analysis, real-time polymerase chain reaction, Western blotting, and ELISA revealed that the proportion of BFCNs at 21 days of differentiation reached approximately 30.5% on 3D-GF compared with TCPS group that only presented 9.7%. Furthermore, a cell adhesion study suggested that 3D-GF scaffold enhances the expression of adhesion proteins including vinculin, integrin, and N-cadherin. These findings indicate that 3D-GF scaffold materials are preferable candidates for the differentiation of BFCNs from NPCs.</p><p><strong>Conclusions: </strong>These results suggest new opportunities for the application of 3D-GF scaffold as a neural scaffold for cholinergic neurons therapies based on NPCs.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1159/000534255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: An early substantial loss of basal forebrain cholinergic neurons (BFCNs) is a common property of Alzheimer's disease and the degeneration of functional BFCNs is related to learning and memory deficits. As a biocompatible and conductive scaffold for growth of neural stem cells, three-dimensional graphene foam (3D-GF) supports applications in tissue engineering and regenerative medicine. Although its effects on differentiation have been demonstrated, the effect of 3D-GF scaffold on the generation of BFCNs still remains unknown.
Methods: In this study, we used 3D-GF as a culture substrate for neural progenitor cells (NPCs) and demonstrated that this scaffold material promotes the differentiation of BFCNs while maintaining excellent cell viability and proliferation.
Results: Immunofluorescence analysis, real-time polymerase chain reaction, Western blotting, and ELISA revealed that the proportion of BFCNs at 21 days of differentiation reached approximately 30.5% on 3D-GF compared with TCPS group that only presented 9.7%. Furthermore, a cell adhesion study suggested that 3D-GF scaffold enhances the expression of adhesion proteins including vinculin, integrin, and N-cadherin. These findings indicate that 3D-GF scaffold materials are preferable candidates for the differentiation of BFCNs from NPCs.
Conclusions: These results suggest new opportunities for the application of 3D-GF scaffold as a neural scaffold for cholinergic neurons therapies based on NPCs.