Effect of Intensive Lipid-Lowering Therapy on Coronary Plaque Stabilization Derived from Optical Coherence Tomography: a Meta-analysis and Meta-regression.
Sen Liu, Jixin Hou, Jindong Wan, Yi Yang, Dan Wang, Dengpan Liang, Xinquan Wang, Peng Zhou, Peijian Wang
{"title":"Effect of Intensive Lipid-Lowering Therapy on Coronary Plaque Stabilization Derived from Optical Coherence Tomography: a Meta-analysis and Meta-regression.","authors":"Sen Liu, Jixin Hou, Jindong Wan, Yi Yang, Dan Wang, Dengpan Liang, Xinquan Wang, Peng Zhou, Peijian Wang","doi":"10.1007/s10557-023-07511-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The definitive impacts of intensive lipid-lowering therapy (LLT) on plaque stabilization and the relationship between the key markers during LLT and plaque stability remain unquestioned. Thus, these meta-analysis and meta-regression intend to holistically evaluate the influence exerted by rigorous LLT on the minimum fibrous cap thickness (FCT) and maximum lipid arc as discerned through optical coherence tomography (OCT). This study further scrutinizes the correlation of this impact with variations in high-sensitivity C-reactive protein (hs-CRP), low-density lipoprotein cholesterol (LDL-C), or additional parameters within patients diagnosed with coronary artery disease (CAD).</p><p><strong>Methods: </strong>Comprehensive searches were conducted on platforms including PubMed, Embase, and the Cochrane Library for randomized controlled trials (RCTs) published until June 1, 2023. The search was language agnostic and targeted RCTs elaborating on the correlation between high-intensity statin therapy or statins used concomitantly with other lipid-lowering medications and the minimum FCT and maximum lipid arc as assessed by OCT. The meta-analyses were executed employing a standard mean difference (SMD) algorithm with random-effects on continuous variables. These methodologies align with the Preferred Reporting Items for Systematic and Meta-analysis (PRISMA) guidelines.</p><p><strong>Results: </strong>A spectrum of 12 RCTs engaging 972 patients were identified and mobilized for these analyses. Meta-analysis outcomes depicted a conspicuous correlation between intensive LLT and an enhanced minimum FCT (12 studies with 972 participants; SMD, 0.87; 95% CI, 0.54 to 1.21; P < 0.01), reduced maximum lipid arc (9 studies with 564 participants; SMD, -0.43; 95% CI, -0.58 to -0.29; P < 0.01). Meta-regression analysis has determined an association of elevated minimum FCT with decreased LDL-C (β, -0.0157; 95% CI, -0.0292 to -0.0023; P = 0.025), total cholesterol (TC) (β, -0.0154; 95% CI, -0.0303 to -0.0005; P = 0.044), and apolipoprotein B (ApoB) (β, -0.0209; 95% CI, -0.0361 to -0.0057; P = 0.022). However, no significant association was discerned relative to variations in hs-CRP/CRP (β, -0.1518; 95% CI, -1.3766 to -1.0730; P = 0.772), triglyceride (TG) (β, -0.0030; 95% CI, -0.0258 to -0.0318; P = 0.822), and high-density lipoprotein cholesterol (HDL-C) (β, 0.0313; 95% CI, -0.0965 to 0.1590; P = 0.608). Subsequent subgroup meta-analysis demonstrated that high-intensity statin therapy (5 studies with 204 participants; SMD, 1.03; 95% CI, 0.67 to 1.39; P < 0.01), as well as a combinative approach including PCSK9 antibodies and statins (3 studies with 522 participants; SMD, 1.17; 95% CI, 0.62 to 1.73; P < 0.01) contributed to an increase in minimum FCT. Parallelly, high-intensity statin therapy (4 studies with 183 participants; SMD, -0.42; 95% CI, -0.65 to -0.19; P < 0.01) or the combined application of PCSK9 antibodies and statins (2 studies with 222 participants; SMD, -0.98; 95% CI, -1.26 to -0.70; P < 0.01) was evidenced to decrease the maximum lipid arc.</p><p><strong>Conclusions: </strong>Intensive LLT, mainly high-intensity statin therapy and combined PCSK9 antibody with statin, has a beneficial effect on coronary plaque stabilization derived from OCT in patients with CAD. Coronary plaque stabilization is primarily due to lipid-lowering effect, not anti-inflammatory effect. Moreover, the lipid-lowering effect has nothing to do with the changes in HDL-C and TG, but is mainly related to the reduction of LDL-C, TC, and ApoB.</p>","PeriodicalId":9557,"journal":{"name":"Cardiovascular Drugs and Therapy","volume":" ","pages":"119-132"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Drugs and Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10557-023-07511-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: The definitive impacts of intensive lipid-lowering therapy (LLT) on plaque stabilization and the relationship between the key markers during LLT and plaque stability remain unquestioned. Thus, these meta-analysis and meta-regression intend to holistically evaluate the influence exerted by rigorous LLT on the minimum fibrous cap thickness (FCT) and maximum lipid arc as discerned through optical coherence tomography (OCT). This study further scrutinizes the correlation of this impact with variations in high-sensitivity C-reactive protein (hs-CRP), low-density lipoprotein cholesterol (LDL-C), or additional parameters within patients diagnosed with coronary artery disease (CAD).
Methods: Comprehensive searches were conducted on platforms including PubMed, Embase, and the Cochrane Library for randomized controlled trials (RCTs) published until June 1, 2023. The search was language agnostic and targeted RCTs elaborating on the correlation between high-intensity statin therapy or statins used concomitantly with other lipid-lowering medications and the minimum FCT and maximum lipid arc as assessed by OCT. The meta-analyses were executed employing a standard mean difference (SMD) algorithm with random-effects on continuous variables. These methodologies align with the Preferred Reporting Items for Systematic and Meta-analysis (PRISMA) guidelines.
Results: A spectrum of 12 RCTs engaging 972 patients were identified and mobilized for these analyses. Meta-analysis outcomes depicted a conspicuous correlation between intensive LLT and an enhanced minimum FCT (12 studies with 972 participants; SMD, 0.87; 95% CI, 0.54 to 1.21; P < 0.01), reduced maximum lipid arc (9 studies with 564 participants; SMD, -0.43; 95% CI, -0.58 to -0.29; P < 0.01). Meta-regression analysis has determined an association of elevated minimum FCT with decreased LDL-C (β, -0.0157; 95% CI, -0.0292 to -0.0023; P = 0.025), total cholesterol (TC) (β, -0.0154; 95% CI, -0.0303 to -0.0005; P = 0.044), and apolipoprotein B (ApoB) (β, -0.0209; 95% CI, -0.0361 to -0.0057; P = 0.022). However, no significant association was discerned relative to variations in hs-CRP/CRP (β, -0.1518; 95% CI, -1.3766 to -1.0730; P = 0.772), triglyceride (TG) (β, -0.0030; 95% CI, -0.0258 to -0.0318; P = 0.822), and high-density lipoprotein cholesterol (HDL-C) (β, 0.0313; 95% CI, -0.0965 to 0.1590; P = 0.608). Subsequent subgroup meta-analysis demonstrated that high-intensity statin therapy (5 studies with 204 participants; SMD, 1.03; 95% CI, 0.67 to 1.39; P < 0.01), as well as a combinative approach including PCSK9 antibodies and statins (3 studies with 522 participants; SMD, 1.17; 95% CI, 0.62 to 1.73; P < 0.01) contributed to an increase in minimum FCT. Parallelly, high-intensity statin therapy (4 studies with 183 participants; SMD, -0.42; 95% CI, -0.65 to -0.19; P < 0.01) or the combined application of PCSK9 antibodies and statins (2 studies with 222 participants; SMD, -0.98; 95% CI, -1.26 to -0.70; P < 0.01) was evidenced to decrease the maximum lipid arc.
Conclusions: Intensive LLT, mainly high-intensity statin therapy and combined PCSK9 antibody with statin, has a beneficial effect on coronary plaque stabilization derived from OCT in patients with CAD. Coronary plaque stabilization is primarily due to lipid-lowering effect, not anti-inflammatory effect. Moreover, the lipid-lowering effect has nothing to do with the changes in HDL-C and TG, but is mainly related to the reduction of LDL-C, TC, and ApoB.
期刊介绍:
Designed to objectively cover the process of bench to bedside development of cardiovascular drug, device and cell therapy, and to bring you the information you need most in a timely and useful format, Cardiovascular Drugs and Therapy takes a fresh and energetic look at advances in this dynamic field.
Homing in on the most exciting work being done on new therapeutic agents, Cardiovascular Drugs and Therapy focusses on developments in atherosclerosis, hyperlipidemia, diabetes, ischemic syndromes and arrhythmias. The Journal is an authoritative source of current and relevant information that is indispensable for basic and clinical investigators aiming for novel, breakthrough research as well as for cardiologists seeking to best serve their patients.
Providing you with a single, concise reference tool acknowledged to be among the finest in the world, Cardiovascular Drugs and Therapy is listed in Web of Science and PubMed/Medline among other abstracting and indexing services. The regular articles and frequent special topical issues equip you with an up-to-date source defined by the need for accurate information on an ever-evolving field. Cardiovascular Drugs and Therapy is a careful and accurate guide through the maze of new products and therapies which furnishes you with the details on cardiovascular pharmacology that you will refer to time and time again.