Blind photovoltaic modeling intercomparison: A multidimensional data analysis and lessons learned

IF 8 2区 材料科学 Q1 ENERGY & FUELS
Marios Theristis, Nicholas Riedel-Lyngskær, Joshua S. Stein, Lelia Deville, Leonardo Micheli, Anton Driesse, William B. Hobbs, Silvana Ovaitt, Rajiv Daxini, David Barrie, Mark Campanelli, Heather Hodges, Javier R. Ledesma, Ismael Lokhat, Brendan McCormick, Bin Meng, Bill Miller, Ricardo Motta, Emma Noirault, Megan Parker, Jesús Polo, Daniel Powell, Rodrigo Moretón, Matthew Prilliman, Steve Ransome, Martin Schneider, Branislav Schnierer, Bowen Tian, Frederick Warner, Robert Williams, Bruno Wittmer, Changrui Zhao
{"title":"Blind photovoltaic modeling intercomparison: A multidimensional data analysis and lessons learned","authors":"Marios Theristis,&nbsp;Nicholas Riedel-Lyngskær,&nbsp;Joshua S. Stein,&nbsp;Lelia Deville,&nbsp;Leonardo Micheli,&nbsp;Anton Driesse,&nbsp;William B. Hobbs,&nbsp;Silvana Ovaitt,&nbsp;Rajiv Daxini,&nbsp;David Barrie,&nbsp;Mark Campanelli,&nbsp;Heather Hodges,&nbsp;Javier R. Ledesma,&nbsp;Ismael Lokhat,&nbsp;Brendan McCormick,&nbsp;Bin Meng,&nbsp;Bill Miller,&nbsp;Ricardo Motta,&nbsp;Emma Noirault,&nbsp;Megan Parker,&nbsp;Jesús Polo,&nbsp;Daniel Powell,&nbsp;Rodrigo Moretón,&nbsp;Matthew Prilliman,&nbsp;Steve Ransome,&nbsp;Martin Schneider,&nbsp;Branislav Schnierer,&nbsp;Bowen Tian,&nbsp;Frederick Warner,&nbsp;Robert Williams,&nbsp;Bruno Wittmer,&nbsp;Changrui Zhao","doi":"10.1002/pip.3729","DOIUrl":null,"url":null,"abstract":"<p>The Photovoltaic (PV) Performance Modeling Collaborative (PVPMC) organized a blind PV performance modeling intercomparison to allow PV modelers to blindly test their models and modeling ability against real system data. Measured weather and irradiance data were provided along with detailed descriptions of PV systems from two locations (Albuquerque, New Mexico, USA, and Roskilde, Denmark). Participants were asked to simulate the plane-of-array irradiance, module temperature, and DC power output from six systems and submit their results to Sandia for processing. The results showed overall <i>median</i> mean bias (i.e., the average error per participant) of 0.6% in annual irradiation and −3.3% in annual energy yield. While most PV performance modeling results seem to exhibit higher precision and accuracy as compared to an earlier blind PV modeling study in 2010, human errors, modeling skills, and derates were found to still cause significant errors in the estimates.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"31 11","pages":"1144-1157"},"PeriodicalIF":8.0000,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3729","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Photovoltaics","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pip.3729","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The Photovoltaic (PV) Performance Modeling Collaborative (PVPMC) organized a blind PV performance modeling intercomparison to allow PV modelers to blindly test their models and modeling ability against real system data. Measured weather and irradiance data were provided along with detailed descriptions of PV systems from two locations (Albuquerque, New Mexico, USA, and Roskilde, Denmark). Participants were asked to simulate the plane-of-array irradiance, module temperature, and DC power output from six systems and submit their results to Sandia for processing. The results showed overall median mean bias (i.e., the average error per participant) of 0.6% in annual irradiation and −3.3% in annual energy yield. While most PV performance modeling results seem to exhibit higher precision and accuracy as compared to an earlier blind PV modeling study in 2010, human errors, modeling skills, and derates were found to still cause significant errors in the estimates.

Abstract Image

盲光伏建模相互比较:多维数据分析和经验教训
光伏(PV)性能建模协作组织(PVPMC)组织了一次光伏性能建模盲比对,使光伏建模师能够根据真实系统数据盲测试其模型和建模能力。提供了测量的天气和辐照度数据,以及两个地点(美国新墨西哥州阿尔伯克基和丹麦罗斯基勒)的光伏系统的详细描述。参与者被要求模拟阵列辐照度、模块温度和六个系统的直流功率输出平面,并将结果提交给桑迪亚进行处理。结果显示,年辐照的总体中值平均偏差(即每个参与者的平均误差)为0.6%,年能量产量为-3.3%。尽管与2010年早期的盲PV建模研究相比,大多数PV性能建模结果似乎显示出更高的精度和准确性,但发现人为错误、建模技能和减额仍然会导致估计中的重大错误。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Progress in Photovoltaics
Progress in Photovoltaics 工程技术-能源与燃料
CiteScore
18.10
自引率
7.50%
发文量
130
审稿时长
5.4 months
期刊介绍: Progress in Photovoltaics offers a prestigious forum for reporting advances in this rapidly developing technology, aiming to reach all interested professionals, researchers and energy policy-makers. The key criterion is that all papers submitted should report substantial “progress” in photovoltaics. Papers are encouraged that report substantial “progress” such as gains in independently certified solar cell efficiency, eligible for a new entry in the journal''s widely referenced Solar Cell Efficiency Tables. Examples of papers that will not be considered for publication are those that report development in materials without relation to data on cell performance, routine analysis, characterisation or modelling of cells or processing sequences, routine reports of system performance, improvements in electronic hardware design, or country programs, although invited papers may occasionally be solicited in these areas to capture accumulated “progress”.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信