FeNi3 nanoparticles for electrocatalytic synthesis of urea from carbon dioxide and nitrate†

IF 6 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Tong Hou, Junyang Ding, Hao Zhang, Shanshan Chen, Qian Liu, Jun Luo and Xijun Liu
{"title":"FeNi3 nanoparticles for electrocatalytic synthesis of urea from carbon dioxide and nitrate†","authors":"Tong Hou, Junyang Ding, Hao Zhang, Shanshan Chen, Qian Liu, Jun Luo and Xijun Liu","doi":"10.1039/D3QM00627A","DOIUrl":null,"url":null,"abstract":"<p >Due to the environmental pollution and high energy consumption associated with the conventional industrial Bosch–Meiser method, electrocatalytic urea synthesis emerges as a promising and sustainable alternative route. In this work, we constructed and utilized nitrogen-doped porous carbon loaded with bimetallic FeNi<small><sub>3</sub></small> alloy nanoparticles as an efficient electrocatalyst for synthesizing urea from carbon dioxide (CO<small><sub>2</sub></small>) and nitrate (NO<small><sub>3</sub></small><small><sup>−</sup></small>). The created FeNi<small><sub>3</sub></small> alloy within FeNi/NC served as the active site for the C–N coupling reaction, generating a higher urea yield of 496.5 μg h<small><sup>−1</sup></small> mg<small><sub>cat.</sub></small><small><sup>−1</sup></small> with a correlating faradaic efficiency (FE) of 16.58% at −0.9 V <em>versus</em> the reversible hydrogen electrode (<em>vs.</em> RHE), when in comparison to monometallic Fe/NC and Ni/NC catalysts. Moreover, we also monitored the urea generation process <em>via in situ</em> Raman spectroscopy technology, which enabled the identification of two critical reaction species, namely O–C–O and N–C–N, inferring that C–N coupling acted as the key reaction step.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 20","pages":" 4952-4960"},"PeriodicalIF":6.0000,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/qm/d3qm00627a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the environmental pollution and high energy consumption associated with the conventional industrial Bosch–Meiser method, electrocatalytic urea synthesis emerges as a promising and sustainable alternative route. In this work, we constructed and utilized nitrogen-doped porous carbon loaded with bimetallic FeNi3 alloy nanoparticles as an efficient electrocatalyst for synthesizing urea from carbon dioxide (CO2) and nitrate (NO3). The created FeNi3 alloy within FeNi/NC served as the active site for the C–N coupling reaction, generating a higher urea yield of 496.5 μg h−1 mgcat.−1 with a correlating faradaic efficiency (FE) of 16.58% at −0.9 V versus the reversible hydrogen electrode (vs. RHE), when in comparison to monometallic Fe/NC and Ni/NC catalysts. Moreover, we also monitored the urea generation process via in situ Raman spectroscopy technology, which enabled the identification of two critical reaction species, namely O–C–O and N–C–N, inferring that C–N coupling acted as the key reaction step.

Abstract Image

用于由二氧化碳和硝酸盐电催化合成尿素的FeNi3纳米颗粒†
由于传统工业Bosch–Meiser方法对环境的污染和高能耗,电催化合成尿素成为一种有前途和可持续的替代途径。在这项工作中,我们构建并利用负载双金属FeNi3合金纳米颗粒的氮掺杂多孔碳作为由二氧化碳(CO2)和硝酸盐(NO3−)合成尿素的有效电催化剂。FeNi/NC中产生的FeNi3合金作为C–N偶联反应的活性位点,产生496.5μg h−1 mgcat的更高尿素产量1,与单金属FE/NC和Ni/NC催化剂相比,在−0.9 V下与可逆氢电极(相对于RHE)的相关法拉第效率(FE)为16.58%。此外,我们还通过原位拉曼光谱技术监测了尿素的生成过程,这使得能够识别两种关键反应物种,即O–C–O和N–C–N,推断C–N偶联是关键反应步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Chemistry Frontiers
Materials Chemistry Frontiers Materials Science-Materials Chemistry
CiteScore
12.00
自引率
2.90%
发文量
313
期刊介绍: Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome. This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信