Impact of induced mutation-derived genetic variability, genotype and varieties for quantitative and qualitative traits in Mentha species.

Priyanka Prasad, Akancha Gupta, Vagmi Singh, Birendra Kumar
{"title":"Impact of induced mutation-derived genetic variability, genotype and varieties for quantitative and qualitative traits in <i>Mentha</i> species.","authors":"Priyanka Prasad, Akancha Gupta, Vagmi Singh, Birendra Kumar","doi":"10.1080/09553002.2023.2263595","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The genus <i>Mentha</i> spp. is an aromatic herb from the family 'Lamiaceae'. It is extensively predominant in temperate and sub-temperate regions of the world. The essential oil of this species is enriched with broad aroma constituents extensively utilized in food, beverages, flavor, cosmetics, perfumery, and pharmaceutical enterprises. With the global menthol market size estimated to be worth USD 765 million in 2022, India (accompanied by China and Brazil) is the world's primary manufacturer, consumer, and exporter of <i>Mentha</i> oil. Despite prominent global demand, the crucial bottleneck in mint cultivation is the need for more superior commercial cultivars. Predominant vegetative propagation mode with difficulties in manual emasculation, differential blooming times, sterile/sub-sterile hybrids, and low seed viability are the primary containment in creating genetic variability by classical breeding approaches. Therefore, genetic complications encountered in conventional breeding have led the breeders to apply mutation breeding as an alternative crop improvement approach in <i>Mentha</i> spp. These attempts at mutation breeding have produced some distinctive mutants as genetic pools for plant breeding programs, and some novel mutant mint cultivars have been made available for commercial cultivation.</p><p><strong>Conclusions: </strong>The prime strategy in mutation-based breeding has proven an adept means of encouraging the expression of recessive genes and producing new genetic variations. The present review comprises a significant contribution of mutation breeding approaches in the development of mutant mint species and its effects on physiological variation, photosynthetic pigment, essential oil content and composition, phytochemical-mediated defense response, pathogen resistivity, and differential expression of genes related to terpenoid biogenesis. Development and diversification have led to the release of varieties, namely Todd's Mitcham, Murray Mitcham, Pranjal, Tushar, and Kukrail in <i>M. piperita</i> L., Mukta, and Pratik in <i>M. cardiaca</i> Baker, Neera in <i>M. spicata</i> L., Kiran in <i>M. citrata</i> Ehrh., and Rose mint in <i>M. arvensis</i> L. that have revolutionized and uplifted mint cultivation leading to economic gain by the farmers and entrepreneurs.</p>","PeriodicalId":94057,"journal":{"name":"International journal of radiation biology","volume":" ","pages":"151-160"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of radiation biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09553002.2023.2263595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/29 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: The genus Mentha spp. is an aromatic herb from the family 'Lamiaceae'. It is extensively predominant in temperate and sub-temperate regions of the world. The essential oil of this species is enriched with broad aroma constituents extensively utilized in food, beverages, flavor, cosmetics, perfumery, and pharmaceutical enterprises. With the global menthol market size estimated to be worth USD 765 million in 2022, India (accompanied by China and Brazil) is the world's primary manufacturer, consumer, and exporter of Mentha oil. Despite prominent global demand, the crucial bottleneck in mint cultivation is the need for more superior commercial cultivars. Predominant vegetative propagation mode with difficulties in manual emasculation, differential blooming times, sterile/sub-sterile hybrids, and low seed viability are the primary containment in creating genetic variability by classical breeding approaches. Therefore, genetic complications encountered in conventional breeding have led the breeders to apply mutation breeding as an alternative crop improvement approach in Mentha spp. These attempts at mutation breeding have produced some distinctive mutants as genetic pools for plant breeding programs, and some novel mutant mint cultivars have been made available for commercial cultivation.

Conclusions: The prime strategy in mutation-based breeding has proven an adept means of encouraging the expression of recessive genes and producing new genetic variations. The present review comprises a significant contribution of mutation breeding approaches in the development of mutant mint species and its effects on physiological variation, photosynthetic pigment, essential oil content and composition, phytochemical-mediated defense response, pathogen resistivity, and differential expression of genes related to terpenoid biogenesis. Development and diversification have led to the release of varieties, namely Todd's Mitcham, Murray Mitcham, Pranjal, Tushar, and Kukrail in M. piperita L., Mukta, and Pratik in M. cardiaca Baker, Neera in M. spicata L., Kiran in M. citrata Ehrh., and Rose mint in M. arvensis L. that have revolutionized and uplifted mint cultivation leading to economic gain by the farmers and entrepreneurs.

诱导突变引起的遗传变异、基因型和品种对薄荷品种数量和质量性状的影响。
目的:薄荷属(Mentha spp.)为唇形科(Lamiaceae)的芳香草本植物。它广泛分布在世界温带和亚温带地区。该物种的精油富含广泛的香气成分,广泛用于食品、饮料、香料、化妆品、香水和制药企业。2022年,全球薄荷醇市场规模估计为7.65亿美元,印度(以及中国和巴西)是世界上薄荷醇油的主要制造商、消费者和出口国。尽管全球需求突出,但薄荷种植的关键瓶颈是需要更优质的商业品种。主要的营养繁殖模式,难以手动阉割、开花时间不同、不育/亚不育杂交种和低种子活力,是通过经典育种方法产生遗传变异的主要遏制因素。因此,在传统育种中遇到的遗传并发症导致育种家将突变育种作为薄荷的一种替代作物改良方法。这些突变育种的尝试产生了一些独特的突变体,作为植物育种计划的遗传库,一些新的突变薄荷品种已可用于商业种植。结论:基于突变育种的主要策略已被证明是促进隐性基因表达和产生新的遗传变异的有效手段。本文综述了突变育种方法在突变薄荷品种发育中的重要贡献,及其对生理变异、光合色素、精油含量和成分、植物化学介导的防御反应、病原体抗性和萜类生物发生相关基因差异表达的影响。发展和多样化导致了品种的释放,即胡椒分枝杆菌中的Todd's Mitcham、Murray Mitcham,Pranjal、Tushar和Kukrail,cardiaca Baker的Mukta和Pratik,spicata的Neera,柠檬分枝杆菌的Kiran。,以及M.arvensis L.的玫瑰薄荷,它们彻底改变和提升了薄荷种植,为农民和企业家带来了经济利益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信