Phage engineering for development of diagnostic tools.

3区 生物学 Q2 Biochemistry, Genetics and Molecular Biology
Subha Sankar Paul
{"title":"Phage engineering for development of diagnostic tools.","authors":"Subha Sankar Paul","doi":"10.1016/bs.pmbts.2023.04.004","DOIUrl":null,"url":null,"abstract":"<p><p>The bacteriophages rely on the host cell to provide energy and resources for their own replication. Antibody-based diagnostic tests rely on the antibody and the biomarker interactions. Since, most of these diagnostic tools employ the use of antibodies; hence, they require intensive storage protocols at cold conditions and incur high time and capital cost due to their production and purification process. Phage-based diagnostics can overcome this limitation. Bacteriophages, have been used as emerging tools for the detection of various pathogens. Rapid phage-mediated detection assays have become commercial diagnostic tools. Conventional method and new cloning approaches have been followed to specifically detect a disease- causing microbial strains. This review discusses use of Phage typing as diagnostic tools, phage-based detection methods, and their usage for signal amplification. Design rules for reporter phage engineering are also discussed followed by different engineering platforms for phage genome editing. We also discuss recent examples of how phage research is influencing the recent advances in the development of phage-based diagnostics for ultra-sensitive detection of various bio-species, outlining the advantages and limitations of detection technology of phage-based assays.</p>","PeriodicalId":49280,"journal":{"name":"Progress in Molecular Biology and Translational Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Molecular Biology and Translational Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.pmbts.2023.04.004","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

The bacteriophages rely on the host cell to provide energy and resources for their own replication. Antibody-based diagnostic tests rely on the antibody and the biomarker interactions. Since, most of these diagnostic tools employ the use of antibodies; hence, they require intensive storage protocols at cold conditions and incur high time and capital cost due to their production and purification process. Phage-based diagnostics can overcome this limitation. Bacteriophages, have been used as emerging tools for the detection of various pathogens. Rapid phage-mediated detection assays have become commercial diagnostic tools. Conventional method and new cloning approaches have been followed to specifically detect a disease- causing microbial strains. This review discusses use of Phage typing as diagnostic tools, phage-based detection methods, and their usage for signal amplification. Design rules for reporter phage engineering are also discussed followed by different engineering platforms for phage genome editing. We also discuss recent examples of how phage research is influencing the recent advances in the development of phage-based diagnostics for ultra-sensitive detection of various bio-species, outlining the advantages and limitations of detection technology of phage-based assays.

用于开发诊断工具的噬菌体工程。
噬菌体依靠宿主细胞为自己的复制提供能量和资源。基于抗体的诊断测试依赖于抗体和生物标志物的相互作用。由于,这些诊断工具大多使用抗体;因此,它们需要在寒冷条件下的密集存储协议,并且由于它们的生产和纯化过程而产生高的时间和资本成本。基于噬菌体的诊断可以克服这一限制。噬菌体已被用作检测各种病原体的新兴工具。噬菌体介导的快速检测分析已成为商业诊断工具。传统的方法和新的克隆方法已经被用来专门检测致病微生物菌株。这篇综述讨论了噬菌体分型作为诊断工具的用途,基于噬菌体的检测方法,以及它们在信号扩增中的用途。还讨论了报道噬菌体工程的设计规则,随后讨论了噬菌体基因组编辑的不同工程平台。我们还讨论了噬菌体研究如何影响基于噬菌体的诊断技术的最新进展,用于各种生物物种的超灵敏检测,概述了基于噬菌体的检测技术的优势和局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
0.00%
发文量
110
审稿时长
4-8 weeks
期刊介绍: Progress in Molecular Biology and Translational Science (PMBTS) provides in-depth reviews on topics of exceptional scientific importance. If today you read an Article or Letter in Nature or a Research Article or Report in Science reporting findings of exceptional importance, you likely will find comprehensive coverage of that research area in a future PMBTS volume.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信